Temperature-Independent High Precision Resistor and Expansion Sensor (nanoNi@C®)

A combination of metal and carbon layers enables to combine the two main characteristics “high expansion sensitivity” and “temperature-independence of the resistor” in one single material. The negative temperature coefficient of carbon is balanced by insertion of metal (nickel) with a positive temperature coefficient, leading to the possibility of producing a material using very low temperature dependence. This new technology offers temperature-independent (± 11 ppm/K in measuring range of 25-200 °C) resistors that show a strong modification of electric resistance depending on the material’s expansion.

Further Information: PDF

Universität des Saarlandes Wissens- und Technologietransfer GmbH PatentVerwertungsAgentur der saarländischen Hochschulen
Phone: +49 (0)681/302-71302

Contact
Dipl.-Kfm. Axel Koch (MBA), Dr. Conny Clausen, Dr. Nicole Comtesse, Dr. Frank Döbrich

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Important milestone on the way to transition metal catalysis with aluminum

Chemists successfully synthesize a cationic, low-valent aluminum complex salt via metathesis. The chemists Philipp Dabringhaus, Julie Willrett and Prof. Dr. Ingo Krossing from the Institute of Inorganic and Analytical Chemistry…

A simple way of sculpting matter into complex shapes

A new method for shaping matter into complex shapes, with the use of ‘twisted’ light, has been demonstrated in research at the University of Strathclyde. When atoms are cooled to…

Stiff, achy knees?

Lab-made cartilage gel outperforms the real thing. Human clinical trials may begin as soon as next year. Over-the-counter pain relievers, physical therapy, steroid injections — some people have tried it…

Partners & Sponsors