Physics & Astronomy

Aguas Zarcas meteorite with irregular surface features.This 146g stone is on loan to the Buseck Center for Meteorite Studies from Michael Farmer. Credit: Arizona State University / SETI Institute.
Physics & Astronomy

Asteroid Pinball: How a Mudball Meteorite Dodged Danger

The research team now believes that Aguas Zarcas is strong because it avoided collisions in space and did not have the cracks that weaken many meteorites. In the Pinball World of Asteroids, a Mudball Meteorite Avoided Collisions March 31, 2025, Mountain View, CA — In April 2019, rare primitive meteorites fell near the town of Aguas Zarcas in northern Costa Rica. In an article published online in the journal Meteoritics & Planetary Science, an international team of researchers describe the…

Thousands upon thousands of stars illuminate this breathtaking image of star cluster Liller 1, imaged with Hubble’s Wide Field Camera 3. This stellar system, located 30,000 light-years from Earth, formed stars over 11 billion years. Credit: ESA/Hubble & NASA, F. Ferraro
Physics & Astronomy

Flatiron Institute Launches New MESA Software for Stellar Evolution

As part of its commitment to unraveling the universe’s mysteries through sustained support of the astrophysics community, the Flatiron Institute is securing the future of MESA (Modules for Experiments in Stellar Astrophysics), an open-source software suite that has transformed how researchers model the evolution of stars. As MESA’s creator, Bill Paxton, steps down, the Flatiron Institute’s Center for Computational Astrophysics (CCA) is stepping up to support MESA’s need for ongoing maintenance and continued development. CCA has hired Philip Mocz as…

Amazing red planet Mars with sunrise rays in deep starry space. Space Wallpaper by alonesbe, Envato
Physics & Astronomy

Electrochemical CO2 Splitting: Mars, Underwater & Earth Uses

Direct splitting: electrochemical process uses carbon dioxide to produce oxygen To mitigate global climate change, emissions of the primary culprit, carbon dioxide, must be drastically reduced. A newly developed process helps solve this problem: CO2 is directly split electrochemically into carbon and oxygen. As a Chinese research team reports in the journal Angewandte Chemie, oxygen could also be produced in this way under water or in space—without requiring stringent conditions such as pressure and temperature. Leafy plants are masters of…

An artist's concept of NASA's Parker Solar Probe. Credit: NASA
Physics & Astronomy

NASA’s Parker Solar Probe Team Wins 2024 Collier Trophy

The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and more than 40 other partner organizations across the country that created the Parker Solar Probe mission has been awarded the 2024 Robert J. Collier Trophy by the National Aeronautic Association (NAA). This annual award recognizes the most exceptional achievement in aeronautics and astronautics in America with respect to improving the performance, efficiency, and safety of air or space vehicles in the previous year….

A new type of quantum computer studies the dance of elementary particles. Image Credit: Harald Ritsch
Physics & Astronomy

New Quantum Computer Analyzes Elementary Particle Dance

The standard model of particle physics is our best theory of the elementary particles and forces that make up our world: particles and antiparticles, such as electrons and positrons, are described as quantum fields. They interact through other force-fields, such as the electromagnetic force that binds charged particles. To understand the behaviour of these quantum fields and with that our universe, researchers perform complex computer simulations of quantum field theories. Unfortunately, many of these calculations are too complicated for even…

black hole galaxy. Image by markusgann, Envato
Physics & Astronomy

Black Holes: A Surprising Source for Nurturing Life

A new study co-led by Dartmouth researchers shows how radiation from black holes could have a nurturing effect on life. At the center of most large galaxies, including our own Milky Way, sits a supermassive black hole. Interstellar gas periodically falls into the orbit of these bottomless pits, switching the black hole into active galactic nucleus (AGN)-mode, blasting high-energy radiation across the galaxy. It’s not an environment you’d expect a plant or animal to thrive in. But in a surprising…

Dr. Mustapha Ishak-Boushaki is a professor ofphysicsat The University of Texas at Dallas and is co-chair of theDark Energy Spectroscopic Instrument(DESI) collaboration's working group that interprets cosmological survey data gathered by the international collaboration, which includes more than 900 researchers from over 70 institutions around the world. Image Credit: University of Texas at Dallas
Physics & Astronomy

New DESI Results Reveal Insights on Dark Energy Evolution

A new analysis of data collected over three years by the Dark Energy Spectroscopic Instrument (DESI) collaboration provides even stronger evidence than the group’s previous datasets that dark energy, long thought to be a “cosmological constant,” might be evolving over time in unexpected ways. Dr. Mustapha Ishak-Boushaki, professor of physics at The University of Texas at Dallas, is co-chair of the DESI working group that interprets cosmological survey data gathered by the international collaboration, which includes more than 900 researchers…

The visualisation of a simulated event in the KM3NeT/ORCA detector. Image Credit: CC BY-NC 4.0 https://creativecommons.org/licences/by-nc/4.0 Credits KM3NeT
Physics & Astronomy

Exploring Quantum Gravity in the Mediterranean Depths

A study published in JCAP places new limits on quantum gravity using data from the underwater detector KM3NeT Quantum gravity is the missing link between general relativity and quantum mechanics, the yet-to-be-discovered key to a unified theory capable of explaining both the infinitely large and the infinitely small. The solution to this puzzle might lie in the humble neutrino, an elementary particle with no electric charge and almost invisible, as it rarely interacts with matter, passing through everything on our…

Geologic map of the asteroid belt.Circles identify the asteroid families from which our meteorites originate and letters mark the corresponding meteorite type. The horizontal axis ranges from short orbits moving just inside the asteroid belt (left) to longer orbits just outside (right). The vertical axis shows how much the asteroid orbits are tilted relative to the plane of the planets. Blue lines are the delivery resonances. Image Credit: From: Jenniskens & Devillepoix (2025) Meteoritics & Planetary Science.
Physics & Astronomy

Geologic Map Unveils Secrets of the Asteroid Belt Meteorites

Knowing from what debris field in the asteroid belt our meteorites originate is important for planetary defense efforts against Near Earth Asteroids. Where do meteorites of different type come from? In a review paper in the journal Meteoritics & Planetary Science, published online this week, astronomers trace the impact orbit of observed meteorite falls to several previously unidentified source regions in the asteroid belt. “This has been a decade-long detective story, with each recorded meteorite fall providing a new clue,”…

Graduate student Trevor Ollis fills a camera with liquid nitrogen to cool it to -120 degrees Celsius in order to examine monolayer materials developed in the laboratory of Nickolas Vamivakas. Image Credit: University of Rochester photo / J. Adam Fenster
Physics & Astronomy

Twisting Atomically Thin Materials Could Boost Quantum Computing

Placing two layers of special 2D materials together and turning them at large angles creates artificial atoms with intriguing optical properties By taking two flakes of special materials that are just one atom thick and twisting them at high angles, researchers at the University of Rochester have unlocked unique optical properties that could be used in quantum computers and other quantum technologies. In a new study published in Nano Letters, the researchers show that precisely layering nano-thin materials creates excitons—essentially, artificial atoms—that can act…

A thorium-doped calcium fluoride crystal's temperature is continually monitored while a VUV frequency comb is used to directly resolve individual quantum states of the nuclear transition. Image Credit: Steven Burrows/JILA
Physics & Astronomy

Precise Nuclear Timekeeping: The Role of Temperature Control

For decades, atomic clocks have been the pinnacle of precision timekeeping, enabling GPS navigation, cutting-edge physics research, and tests of fundamental theories. But researchers at JILA, led by JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye, in collaboration with the Technical University of Vienna, are pushing beyond atomic transitions to something potentially even more stable: a nuclear clock. This clock could revolutionize timekeeping by using a uniquely low-energy transition within the nucleus of a thorium-229…

L-R: Dr Wallace Jaffray, a post-doctoral research associate, Dr Marcello Ferrera, associate professor of nano-photonics, and Sven Stengel, PhD candidate. Image Credit: Heriot-Watt University
Physics & Astronomy

Unlocking New Dimensions in Light Manipulation for Photonics

Researchers at Heriot-Watt University have made a ground-breaking discovery paving the way for a transformative era in photonic technology. For decades, scientists have theorised the possibility of manipulating the optical properties of light by adding a new dimension—time. This once-elusive concept has now become a reality thanks to nanophotonics experts from the School of Engineering and Physical Sciences in Edinburgh, Scotland. The team’s breakthrough emerged from experiments with nanomaterials known as transparent conducting oxides (TCOs) – a special glass capable…

“We have demonstrated that by using optical vortex beams—light beams that carry angular momentum—we can precisely control how an electron is ejected from an atom”Ravi Bhardwaj— Full Professor at uOttawa’s Department of Physics. Image Credit: University of Ottawa
Physics & Astronomy

uOttawa Scientists Use Light to Reveal Atomic Secrets

A team of researchers from the University of Ottawa has made significant strides in understanding the ionization of atoms and molecules, a fundamental process in physics that has implications for various fields including x-ray generation and plasma physics. Think about atoms – the building blocks of everything around us. Sometimes, they lose their electrons and become charged particles (that’s ionization). It happens in lightning, in plasma TVs, and even in the northern lights. Until now, scientists thought they could only…

From within the Mare Crisium impact basin, the SwRI-led Lunar Magnetotelluric Sounder (LMS) is making the first geophysical measurements representative of the bulk of the Moon. Most of the Apollo missions landed in the region of linked maria to the west (left image), whose crust was later shown to be compositionally distinct (right image) as exemplified by the concentration of the element thorium. Mare Crisium provides a smooth landing site on the near side of the Moon outside of this anomalous region. Image Credit: NASA
Physics & Astronomy

SwRI Deploys Innovative Sounder Instrument on Lunar Surface

Lunar Magnetotelluric Sounder to characterize Moon’s mantle Just hours after touching down on the surface of the Moon on March 2 aboard Firefly Aerospace’s Blue Ghost 1 lander, the Southwest Research Institute-led Lunar Magnetotelluric Sounder (LMS) was activated and deployed its five sensors to study the Moon’s interior by measuring electric and magnetic fields. The LMS instrument is the first extraterrestrial application of magnetotellurics. “For more than 50 years, scientists have used magnetotellurics on Earth for a wide variety of…

Artist's illustration of a potential Hycean world, where methyl halide gases would be detectable in the atmosphere. Image Credit: NASA, ESA, CSA, Joseph Olmsted/STScI
Physics & Astronomy

Signs of Alien Life: Discover Hidden Gases in Space

Advancing the search for weird life on weird planets Scientists have identified a promising new way to detect life on faraway planets, hinging on worlds that look nothing like Earth and gases rarely considered in the search for extraterrestrials. In a new Astrophysical Journal Letters paper, researchers from the University of California, Riverside, describe these gases, which could be detected in the atmospheres of exoplanets — planets outside our solar system — with the James Webb Space Telescope, or JWST….

For a century, astronomers have been studyingBarnard’s Starin the hope of finding planets around it. First discovered by E. E. Barnard atYerkes Observatoryin 1916, it is the nearest single star system to Earth. Now, using in part theGemini North telescope, one half of theInternational Gemini Observatory, partly funded by the U.S. National Science Foundation and operated by NSF NOIRLab, astronomers have discovered four sub-Earth exoplanets orbiting the star. One of the planets is the least massive exoplanet ever discovered using the radial velocity technique, indicating a new benchmark for discovering smaller planets around nearby stars. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld
Physics & Astronomy

New Planetary System Discovered Around Nearest Star

Gemini North’s MAROON-X instrument finds evidence for four mini-Earth exoplanets around our famous cosmic neighbor Barnard’s Star For a century, astronomers have been studying Barnard’s Star in the hope of finding planets around it. First discovered by E. E. Barnard at Yerkes Observatory in 1916, it is the nearest single star system to Earth [1]. Barnard’s Star is classified as a red dwarf — low-mass stars that often host closely-packed planetary systems, often with multiple rocky planets. Red dwarfs are extremely numerous in the Universe, so scientists…

Feedback