Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens has installed first offshore platform in the North Sea

26.08.2013
  • HelWin1 North Sea platform will supply more than 500,000 households with wind power
  • Commissioning of grid connection HelWin1 on schedule for 2014
  • More than 100 employees performing installation at sea

Siemens has installed the HelWin1 offshore platform in the North Sea, marking the successful completion of a significant stage in German grid connection projects. HelWin1 will link the two offshore wind farms Nordsee Ost and Meerwind to the mainland.


Siemens has installed first offshore platform in the North Sea

Using the Siemens technology installed on the platform, the alternating current power generated by the wind turbines is transformed into low-loss direct current for transmission onto land. Starting next year, this will enable the network operator and purchaser TenneT to supply clean electricity to more than 500,000 German households on the mainland.

The land-based station, also supplied by Siemens to TenneT, is located northwest of Hamburg in Büttel, where electricity will be converted back into the alternating current power required for feeding into the grid.

"With the installation of our platform at sea we have successfully mastered the most critical part of this project and are now in the final stretch for commissioning in 2014", stated Karlheinz Springer, CEO of the Power Transmission Division within the Energy Sector of Siemens AG.

"Installation of the platform for HelWin1 constitutes reaching a key milestone in our series of grid connection projects. The transmission capacity of our projects involves a total of 6.2 gigawatts of electric power from renewable sources. TenneT is thus contributing to offshore wind energy assuming a substantial role in the future's energy supply," remarked Lex Hartman, member of TenneT management board.

The network operator TenneT contracted the consortium consisting of Siemens and the Italian cable specialist Prysmian for the HelWin1 offshore grid connection in 2010. This consortium is implementing a total of four North Sea grid connection projects for TenneT; HelWin1 and HelWin2 off of Helgoland, BorWin2 off of Borkum and SylWin1 off of Sylt.

After seven days of transport at sea and four days of installation on site, the HelWin1 platform was anchored at its final position northwest of the island of Helgoland on August 23. Siemens had installed the platform's support substructure at this location in June in the 23-meter-deep North Sea. Ten steel pilings up to 3.2 meters in diameter and with a wall thickness of eight centimeters were anchored in the seabed for attachment of the structure. With a length of up to 100 meters, these pilings are as tall as the famous London landmark Big Ben. The platform is installed 22 meters above sea level to protect it against giant waves. HelWin1 is designed for decades of operation in the rugged North Sea.

The platform is equipped with a helipad and was fabricated by Nordic Yards at the shipyard in Wismar under contract by Siemens. Nordic Yards has been contracted by Siemens with the fabrication of two more HVDC platforms for the grid connections BorWin2 and SylWin. At 12,000 tons, the HelWin1 platform weighs more than 20 loaded and fully tanked Airbus A380 super airliners. The surface area of the platform, at 75 by 50 meters, is more than half the size of a soccer field. The platform's seven decks, spanning a total height of 27 meters, accommodate 16 cabins for crewmembers with a total of 24 berths, a galley, sanitary facilities, a multi-purpose room equipped with sports equipment and a day room with satellite TV, in addition to housing all the technology and equipment required for HVDC transmission.

Up to 100 employees will be active on the platform for the subsequent project phase in the North Sea. They will first re-open the doors and panels previously welded closed for transport and remove other protective transport fixtures and ballast weights. An on-site jack-up platform, which is a kind of mobile logistics and accommodation platform, will be used to prepare the supplies and quarters for the crew. The team thus will save travel time of two hours each to and from the platform by helicopter, or of up to 16 hours each way by ship.

Now, the two subsea cables from the well-established cable specialist Prysmian are also to be connected. Siemens' consortium partner has supplied and laid in bundle the two cables, each with a length of 130 km, for transmission of 250 kilovolt DC voltage in the future. The cable route covers 85 km at sea and 45 km over land. Both 11 cm thick cables, with its protective steel armoring wire layer and a 35 mm thick copper conductor, weighs about 30 kg per meter.

The HelWin1 HVDC platform has a capacity of 576 megawatts (MW). Thanks to the efficient direct-current technology employed, the total transmission losses for this connection are less than four percent. The HVDC Plus technology employed by Siemens reduces the complexity and, hence, the space requirements for HVDC systems, which is a decisive factor for installation at sea. In contrast to classic HVDC technology used in a vast majority of land links, systems equipped with HVDC Plus feature self-stabilization. This enhances grid reliability in the event of power fluctuations, which can occur with wind-based power generation. HVDC Plus is a multi-level VSC system. This modular, multi-level VSC technology ensures an almost ideal sinusoidal AC waveshape and smoothed direct voltage along the transmission line, that makes the installation of high-frequency and harmonic filters practically superfluous.

The commissioning of HelWin1 is scheduled for the second half of 2014. The platform is completely automated and the systems on the platform can be monitored and controlled from land, with cameras and sensors providing a complete overview of the current operating status. The crews' quarters on the platform can be used when maintenance work is required. Siemens was contracted by TenneT for maintenance of the grid connection for an initial period of five years.

The Siemens Energy Sector is the world's leading supplier of a broad spectrum of products, services and solutions for power generation in thermal power plants and using renewables, power transmission in grids and for the extraction, processing and transport of oil and gas. In fiscal 2012 (ended September 30), the Energy Sector had revenues of EUR27.5 billion and received new orders totaling approximately EUR26.9 billion and posted a profit of EUR2.2 billion. On September 30, 2012, the Energy Sector had a work force of almost 86,000. Further information is available http://www.siemens.com/energy

Reference Number: EPT201308059e

Contact
Mr. Torsten Wolf
Energy Sector
Siemens AG
Freyeslebenstr. 1
91058 Erlangen
Germany
Tel: +49 (9131) 18-82532
torsten.tw.wolf​@siemens.com

Torsten Wolf | Siemens Energy
Further information:
http://www.siemens.com/energy

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>