Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary electrical current sensors harvest wasted electromagnetic energy

28.01.2014
Groundbreaking passive sensing and energy harvesting technologies safeguard electrical engineering assets

Electricity is the lifeblood of modern cities. It flows at every moment and everywhere to power up everything from home appliances which improve our comfort and convenience, to services like transportation, building, communication and manufacturing that are essential to our daily life.


These smart wireless sensors can now reach hard-to-access locations such as rails where conventional sensors are either impossible or not cost effective.

To ensure a reliable operation of power grids and a proper delivery of electricity to where it needs to be, it is crucial to have a loyal guard to keep watch on the activities of electricity transport. As technology advances, the safety, reliability and availability of electrical engineering assets and public utilities can now be guarded by one tiny chip of electrical current sensors.

Measuring about 1 mm in thickness, the chip is a masterpiece by Professor Derek Siu-wing Or and his research team in the Department of Electrical Engineering of The Hong Kong Polytechnic University. The chip can be placed on any sensing point of interest such as electrical cables, conductors, junctions, bus bars, etc. to detect electrical currents. What’s more, it does not necessitate the use of additional power supplies and signal conditioners which are generally required by traditional current sensors such as Hall sensors, reluctance coils, etc.

According to Professor Or, the chip is an amazing work of advanced functional materials. Made from rare earth multiferroics with giant magnetoelectric properties, the chip enables a direct detection of magnetic fields generated by electricity and a linear conversion of these magnetic fields into electrical voltage signals. The amplitude of the converted signals is linearly proportional to the magnetic fields, while their frequency exactly follows the magnetic fields. The “magnetoelectric smart material”, as called by the team, is then specially engineered into “self-sustainable magnetoelectric smart sensors” that recognize telltale changes of electrical currents within electrical equipment. It is as simple as using a thermometer to give temperatures.

The exciting part is that Professor Or and his team have got rid of power supplies and signal conditioners from traditional current sensors. When power and signal conditioning requirements are eliminated, the smart sensors do not have power cords and electronic active components. They can be conveniently, safely and reliably used for early fault detection in unthinkable territories.

Professor Or explained, “Our smart sensors are essentially simple, totally passive and capable of producing large and clear output voltage signals which are 2,000 times higher than the traditional current sensors. This passive and self-sustainable nature allows real-time, nonstop monitoring of the ‘health’ of electrical equipment, including those carrying high voltages, heavy currents and/or strong electromagnetic fields.

“Besides, these smart sensors can be tailored to harvest electromagnetic radiations emitted by the electrical equipment being monitored and to turn them into useful electrical energy. The stored electrical energy can be used to power up microcontrollers, displays, wireless transmitters, etc., further advancing the smart sensor technology toward ‘energy-harvesting smart wireless sensors’.”

The smart wireless sensors are being tested in electrical traction systems on trains in both Hong Kong and Singapore to provide in-situ monitoring of traction conditions and to detect electrical faults that may bring train services to a halt.

The benefits of the smart wireless sensor innovation go well beyond these advantages. For example, smart wireless sensors can now reach hard-to-access locations such as rails, tunnels, high-rises, underground premises, meter rooms, etc., where hardwired power cords and signal cables are either impossible or not cost effective. Another example is that the patented technology allows quick detection of malfunctions of ventilation fans inside tunnels, reducing the need of tunnel services suspension.

The journey does not end here; in fact, the research team is working further to perfect the technology. Professor Or said, “We aim to enhance the energy harvesting capability while making the smart sensors even more sensitive and reliable in measurement.” Their research work has been supported by E-T-A Elektrotechnische Apparate GmbH (E-T-A) through a EUR500,000 fund. As a global leader in electrical circuit protection, the German company focuses on advancing electrical circuit protection technology. Professor Or and E-T-A are working together to embed the smart wireless sensor technology in new generation electrical circuit protection products that would meet the highest standards in terms of innovation, safety, reliability and efficiency.

A leading power company has engaged Professor Or and his research team in a large scale project to supply, test and commission a significant amount of smart sensors for use in substations. Imagine a power cable that would beep when it is sick and beep even louder when it is about to give out. In the near future, our power grids can be smarter than they currently are.

Hong Kong Polytechnic University | Research asia research news
Further information:
http://www.polyu.edu.hk/ife/corp/en/publications/tech_front.php?preview=preview&tfid=7666
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Mission possible: This device will self-destruct when heated
22.05.2015 | University of Illinois at Urbana-Champaign

nachricht Gamma ray camera may help with Fukushima decontamination*
21.05.2015 | Waseda University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>