Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules take electronics for a spin

19.04.2002




Researchers eager to use individual molecules as the components of ultra-small electronic circuits and computers have put a new spin on their ambitious goal.

They take advantage of a hitherto unexploited property of electric currents, called spin, to make molecular devices that operate under new rules. This fledgling form of electronics, called spintronics, could lead to computers that don’t forget anything when their power is turned off, and perhaps even to that ultra-powerful device, the quantum computer.



Jan Hendrik Schön of Bell Laboratories in New Jersey and co-workers have made a prototype spintronics device called a spin valve, in which the electrical current passes from one terminal to the other through individual carbon-based molecules1.

Previous spin valves were made from slabs of semiconductor, much as conventional transistors are made from silicon. But made from single molecules they could be much smaller than today’s miniaturized transistors on silicon chips. Circuits could then be more densely packed with devices and therefore more powerful.

Molecular electronics will probably complement rather than replace conventional semiconductor-based microelectronics. Making devices as small as single molecules will be very difficult. The electrical contacts for these devices "will always be larger than the dimensions of the molecules themselves," Schön cautions. This could limit the amount of miniaturization that is possible.

Up and down

Conventional devices such as transistors use electric fields to control how many electrons pass through them - in other words, how big the electric current is. A spin valve controls the current using magnetism.

It manipulates a property of every electron called spin. Spin takes one of two values: ’up’ or ’down’, and makes an electron magnetic

In a spin valve, layers of magnetic material act as a filter, letting through electrons with one spin orientation (up, say), and blocking those with oppositely oriented spins (down).

So information encoded in the electrons’ spins can be manipulated to perform computational tasks. The up/down orientation of spins is equivalent to the 1 and 0 of binary logic that computers use.

In a spin

To make their molecular spin valve, Schön and colleagues laid down a one-molecule-thick carpet of a substance called pentanethiol on top of a nickel film. The pentanethiol molecules stick out like bristles from the metal surface. A few bristles of a different molecule, benzene-1,4-thiol (BDT), conduct electrical current.

They then deposited a patchwork of thin nickel films on top, so the molecules were sandwiched between two layers of metal, which acted as electrical contacts.

These nickel films cover just a hundred thousand or so molecules each. On average, only one of these is a BDT molecule: this single molecule provides an electrical connection between the two layers of nickel. Because nickel is magnetic, it acts on a current via the electrons’ spins.

The researchers found that switching the direction in which the magnetic fields point in the top and bottom nickel layers alters the current. When the two fields are aligned, a lot of current passes through a single BDT molecule; when the fields point in opposite directions, the current drops because some electrons with the wrong spins are filtered out.

Wedge wires/b>

A team in Karlsruhe, Germany, led by Heiko Weber, have meanwhile shown that similar single-molecule ’wires’ spanning a tiny gap between two metal terminals act as weird wires. They conduct better in one direction than the other2.

These molecular wires are wedge shaped. In a normal metal wire this wouldn’t make any difference, showing how molecular-scale circuits could be designed using new principles.

References
  1. Schon, J. H., Emberly, E.G. & Kirczenow, G.A. A single molecular spin valve. Science, Published online, DOI:10.1126/science.1070563 (2002).
  2. Reichert, J. Driving current through single organic molecules. Physical Review Letters, 88, 176804 , (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Harvesting the Sun for Power and Produce
24.11.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Batteries with better performance and improved safety
23.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
VideoLinks
B2B-VideoLinks
More VideoLinks >>>