Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules take electronics for a spin

19.04.2002




Researchers eager to use individual molecules as the components of ultra-small electronic circuits and computers have put a new spin on their ambitious goal.

They take advantage of a hitherto unexploited property of electric currents, called spin, to make molecular devices that operate under new rules. This fledgling form of electronics, called spintronics, could lead to computers that don’t forget anything when their power is turned off, and perhaps even to that ultra-powerful device, the quantum computer.



Jan Hendrik Schön of Bell Laboratories in New Jersey and co-workers have made a prototype spintronics device called a spin valve, in which the electrical current passes from one terminal to the other through individual carbon-based molecules1.

Previous spin valves were made from slabs of semiconductor, much as conventional transistors are made from silicon. But made from single molecules they could be much smaller than today’s miniaturized transistors on silicon chips. Circuits could then be more densely packed with devices and therefore more powerful.

Molecular electronics will probably complement rather than replace conventional semiconductor-based microelectronics. Making devices as small as single molecules will be very difficult. The electrical contacts for these devices "will always be larger than the dimensions of the molecules themselves," Schön cautions. This could limit the amount of miniaturization that is possible.

Up and down

Conventional devices such as transistors use electric fields to control how many electrons pass through them - in other words, how big the electric current is. A spin valve controls the current using magnetism.

It manipulates a property of every electron called spin. Spin takes one of two values: ’up’ or ’down’, and makes an electron magnetic

In a spin valve, layers of magnetic material act as a filter, letting through electrons with one spin orientation (up, say), and blocking those with oppositely oriented spins (down).

So information encoded in the electrons’ spins can be manipulated to perform computational tasks. The up/down orientation of spins is equivalent to the 1 and 0 of binary logic that computers use.

In a spin

To make their molecular spin valve, Schön and colleagues laid down a one-molecule-thick carpet of a substance called pentanethiol on top of a nickel film. The pentanethiol molecules stick out like bristles from the metal surface. A few bristles of a different molecule, benzene-1,4-thiol (BDT), conduct electrical current.

They then deposited a patchwork of thin nickel films on top, so the molecules were sandwiched between two layers of metal, which acted as electrical contacts.

These nickel films cover just a hundred thousand or so molecules each. On average, only one of these is a BDT molecule: this single molecule provides an electrical connection between the two layers of nickel. Because nickel is magnetic, it acts on a current via the electrons’ spins.

The researchers found that switching the direction in which the magnetic fields point in the top and bottom nickel layers alters the current. When the two fields are aligned, a lot of current passes through a single BDT molecule; when the fields point in opposite directions, the current drops because some electrons with the wrong spins are filtered out.

Wedge wires/b>

A team in Karlsruhe, Germany, led by Heiko Weber, have meanwhile shown that similar single-molecule ’wires’ spanning a tiny gap between two metal terminals act as weird wires. They conduct better in one direction than the other2.

These molecular wires are wedge shaped. In a normal metal wire this wouldn’t make any difference, showing how molecular-scale circuits could be designed using new principles.

References
  1. Schon, J. H., Emberly, E.G. & Kirczenow, G.A. A single molecular spin valve. Science, Published online, DOI:10.1126/science.1070563 (2002).
  2. Reichert, J. Driving current through single organic molecules. Physical Review Letters, 88, 176804 , (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
More VideoLinks >>>