Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Better connected

17.02.2012
A novel link between optical fibers and nanometer-scale silicon structures could aid the development of integrated optical circuits
Silicon is a unique material that has revolutionized electronics; it enables engineers to put millions of electrical devices onto a single chip. Replacing the electrical currents in this technology with beams of light could enable even faster information processing. Qian Wang at the A*STAR Data Storage Institute and co-workers1 have now designed a crucial component for such optical chips — a connector that links the silicon chip to an optical fiber. Such a device should enable efficient light input and output.

Silicon is a promising platform for dense photonic integration because sub-micrometer-sized silicon wires, known as waveguides, are capable of tightly confining and guiding light. As the technology required for processing silicon in this way already exists, silicon nanowires are attracting attention from the electronics industry. The challenge, however, is to be able to insert and extract a beam of light efficiently into and out of such tiny structures.

Wang and his team have now designed an ultra-compact lens that can be directly integrated into the silicon chip at the end of the waveguide. Their proposed lens is based on an idea known as a graded refractive index (GRIN) lens. The common GRIN lens usually distorts a light beam as it is collimated or focused, resulting in a so-called aberration. “We now propose a computational algorithm that can generate a novel graded refractive index profile for the GRIN lens and thus achieve aberration-free sub-wavelength focusing and highly efficient coupling,” says Wang.

The team of researchers’ graded index structure consists of a stack of alternating layers of two materials — for example, using silicon, which has a high refractive index, and silicon dioxide, which has a low refractive index. The layers of silicon are thicker than those of silicon dioxide at the optical axis, but this gradually reverses higher up in the stack.

Simulations showed how this structure could expand out light travelling along a 300 nanometer-thick silicon waveguide so that it couples to a fiber with a diameter of 10.4 micrometers. With appropriate anti-reflection coating, the coupling efficiency was calculated to be as high as 90%. The team of researchers also assessed the sensitivity of the optical coupling to any movement of the fiber, indicating that the new approach would provide a compact, efficient and robust way of achieving fiber-to-nanophotonic chip coupling. The next step will be to demonstrate this concept experimentally. “We plan to incorporate the idea into an electronic–photonic integration platform,” says Wang.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>