Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Better connected

17.02.2012
A novel link between optical fibers and nanometer-scale silicon structures could aid the development of integrated optical circuits
Silicon is a unique material that has revolutionized electronics; it enables engineers to put millions of electrical devices onto a single chip. Replacing the electrical currents in this technology with beams of light could enable even faster information processing. Qian Wang at the A*STAR Data Storage Institute and co-workers1 have now designed a crucial component for such optical chips — a connector that links the silicon chip to an optical fiber. Such a device should enable efficient light input and output.

Silicon is a promising platform for dense photonic integration because sub-micrometer-sized silicon wires, known as waveguides, are capable of tightly confining and guiding light. As the technology required for processing silicon in this way already exists, silicon nanowires are attracting attention from the electronics industry. The challenge, however, is to be able to insert and extract a beam of light efficiently into and out of such tiny structures.

Wang and his team have now designed an ultra-compact lens that can be directly integrated into the silicon chip at the end of the waveguide. Their proposed lens is based on an idea known as a graded refractive index (GRIN) lens. The common GRIN lens usually distorts a light beam as it is collimated or focused, resulting in a so-called aberration. “We now propose a computational algorithm that can generate a novel graded refractive index profile for the GRIN lens and thus achieve aberration-free sub-wavelength focusing and highly efficient coupling,” says Wang.

The team of researchers’ graded index structure consists of a stack of alternating layers of two materials — for example, using silicon, which has a high refractive index, and silicon dioxide, which has a low refractive index. The layers of silicon are thicker than those of silicon dioxide at the optical axis, but this gradually reverses higher up in the stack.

Simulations showed how this structure could expand out light travelling along a 300 nanometer-thick silicon waveguide so that it couples to a fiber with a diameter of 10.4 micrometers. With appropriate anti-reflection coating, the coupling efficiency was calculated to be as high as 90%. The team of researchers also assessed the sensitivity of the optical coupling to any movement of the fiber, indicating that the new approach would provide a compact, efficient and robust way of achieving fiber-to-nanophotonic chip coupling. The next step will be to demonstrate this concept experimentally. “We plan to incorporate the idea into an electronic–photonic integration platform,” says Wang.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>