Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Better connected

17.02.2012
A novel link between optical fibers and nanometer-scale silicon structures could aid the development of integrated optical circuits
Silicon is a unique material that has revolutionized electronics; it enables engineers to put millions of electrical devices onto a single chip. Replacing the electrical currents in this technology with beams of light could enable even faster information processing. Qian Wang at the A*STAR Data Storage Institute and co-workers1 have now designed a crucial component for such optical chips — a connector that links the silicon chip to an optical fiber. Such a device should enable efficient light input and output.

Silicon is a promising platform for dense photonic integration because sub-micrometer-sized silicon wires, known as waveguides, are capable of tightly confining and guiding light. As the technology required for processing silicon in this way already exists, silicon nanowires are attracting attention from the electronics industry. The challenge, however, is to be able to insert and extract a beam of light efficiently into and out of such tiny structures.

Wang and his team have now designed an ultra-compact lens that can be directly integrated into the silicon chip at the end of the waveguide. Their proposed lens is based on an idea known as a graded refractive index (GRIN) lens. The common GRIN lens usually distorts a light beam as it is collimated or focused, resulting in a so-called aberration. “We now propose a computational algorithm that can generate a novel graded refractive index profile for the GRIN lens and thus achieve aberration-free sub-wavelength focusing and highly efficient coupling,” says Wang.

The team of researchers’ graded index structure consists of a stack of alternating layers of two materials — for example, using silicon, which has a high refractive index, and silicon dioxide, which has a low refractive index. The layers of silicon are thicker than those of silicon dioxide at the optical axis, but this gradually reverses higher up in the stack.

Simulations showed how this structure could expand out light travelling along a 300 nanometer-thick silicon waveguide so that it couples to a fiber with a diameter of 10.4 micrometers. With appropriate anti-reflection coating, the coupling efficiency was calculated to be as high as 90%. The team of researchers also assessed the sensitivity of the optical coupling to any movement of the fiber, indicating that the new approach would provide a compact, efficient and robust way of achieving fiber-to-nanophotonic chip coupling. The next step will be to demonstrate this concept experimentally. “We plan to incorporate the idea into an electronic–photonic integration platform,” says Wang.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>