Hannover Messe: Silver circuits on foil allow curved touchscreens

Silver circuits on foil with photochemical metallization. Source: INM; free within this press release

For the proper functioning of touchscreens in smart phones or tablets, microscopically fine conductor lines are required on their surfaces. At the edges of the appliances, these microscopic circuit paths come together to form larger connective pads.

Until now, these different lines had to be manufactured in several steps in time-consuming processes. With the photochemical metallization this is now possible in one single step on flexible substrates. The process offers several benefits: It is fast, flexible, variable in size, inexpensive and environmentally friendly. Furthermore additional process steps for post-treatment are not necessary.

In the new process, the foils are coated with a photoactive layer of metal oxide nanoparticles. “After that we apply a colorless, UV-stable silver compound,” Peter William de Oliveira, Head of Optical Materials explains. By irradiation of this sequence of layers, the silver compound disintegrates on the photoactive layer and the silver ions are reduced to form metallic, electrically conductive silver. In this way, lines of varying sizes down to the smallest size of a thousandth of a millimeter can be achieved.

This basic principle allows conductor lines to be created very individually. “There are different possibilities depending on the requirements: Writing conductor lines using UV lasers is the process which is particularly suitable for the initial customized prototype manufacture and for testing a new design of the conductor lines. However, for mass production, this method is too time-consuming,” the physicist de Oliveira explains.

The researchers are currently working intensely on a new method, the usage of transparent stamps. “These stamps push out the silver compound mechanically; conductor lines then only occur where the silver compound remains,” de Oliveira states. Since the stamps are made of a soft plastic, they can be arranged on a roll. Because the stamps are transparent, researchers at INM are now working on embedding the UV source directly in the roll.

“Thus, the initial steps for a roll-to-roll process will be taken,” the Head of Optical Materials group concludes. It will therefore be possible to manufacture conductor line structures of various sizes on foils on a large scale.

Your expert at INM
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Head InnovationCenter INM
Phone: +49681-9300-148
OptiMat@leibniz-inm.de

INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. INM conducts research and development to create new materials – for today, tomorrow and beyond. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces. INM is an institute of the Leibniz Association and has about 240 employees.

http://www.leibniz-inm.de

Media Contact

Dr. Carola Jung idw - Informationsdienst Wissenschaft

All latest news from the category: Trade Fair News

Back to home

Comments (0)

Write a comment

Newest articles

EEG ad tDCS chould serve as the basis of therapeutic strategies to combat newrological disorders. Image Credit: Institute of Science Tokyo

Using Electroencephalography to Improve Language Disorder Treatments

Researchers work towards an inexpensive and portable solution for treating aphasia  Electroencephalography (EEG) may offer a more accessible alternative to functional magnetic resonance imaging (fMRI) for guiding transcranial direct current…

The BioSCape team is poctured with NASA and South African aircraft. Image Credit: Jeremey Shelton/Fishwater Films

Measuring Life on Earth from Space: A Global Research Project

Measurements and data collected from space can be used to better understand life on Earth. An ambitious, multinational research project funded by NASA and co-led by UC Merced civil and…

NEJM study finds patients with blockages in medium-sized vessels in the brain who had endovascular treatment did not do any better and did not see any improvement compared to patients who had the standard of care. Dr. Michael Hill, MD, Dr. Mayank Goyal, MD, PhD (right). Image Credit: Riley Brandt, University of Calgary

Best Approach for Stroke in Medium-Sized Blood Vessels Identified

Calgary’s Stroke Program advancing science to improve care, treatment and outcomes for patients  University of Calgary’s Hotchkiss Brain Institute researchers with the Calgary Stroke Program at Foothills Medical Centre revolutionized…