Particles for optional perfusion diagnosis

Perfusion analysis in animal models (e.g. myocardial infarction) is currently determined by using fluorescent particles or dyes that are injected into circulation. They distribute throughout all blood vessels and stain them permanently. Thus it is possible to distinguish areas that are supplied with blood and those that are not. Since the dyes are long-lasting in the tissues they interfere with subsequent methods of analysis. A model animal that is used for perfusion analytics can therefore only be used for this specific analytical method.
The present invention overcomes these drawbacks by injecting non fluorescent inert particles that are the first component of an orthogonal system. After perfusion with these particles, the second component is added to frozen tissue sections of interest. Thus, perfusion analysis is solely performed on a selected tissue section, without any limitations for the remaining tissue.
This approach allows a background-free subsequent tissue analysis, optimizes data harvest, is economic and reduces animal consumption.

Further information: PDF

Bayerische Patentallianz GmbH
Phone: +49 89 5480177-0

Contact
Peer Biskup

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Nanofiber-hydrogel loaded with stem cells shows success

… treating severe complication of Crohn’s disease. Johns Hopkins researchers develop injectable biomimetic hydrogel composite that promotes regenerative healing in an animal model of Crohn’s perianal fistulas. In a new…

World-class center for single crystal electron diffraction will be UK first

New electron diffraction equipment is about to revolutionize how we understand crystal structures. A new centre based jointly at the University of Southampton and the University of Warwick will draw…

Research challenges “sugar hypothesis” of diabetic cataract development

In preclinical models, investigators uncovered a novel mechanism underlying the development of diabetic cataracts that undermines current hypothesis. New findings from investigators at Brigham and Women’s Hospital, a founding member…

Partners & Sponsors