A glass that builds and heals itself

Researchers from Tel Aviv University have for the first time created a transparent, self-repairing adhesive glass that forms spontaneously when it comes in contact with water.

An international discovery published in the prestigious journal Nature:

Researchers from Tel Aviv University (TAU) have created a new type of glass with unique and even contradictory properties, such as being a strong adhesive (sticky) and incredibly transparent at the same time. The glass, which forms spontaneously when comes in contact with water at room temperature, could bring about a revolution in an array of different and diverse industries such as optics and electro-optics, satellite communication, remote sensing and biomedicine. The glass was discovered by a team of researchers from Israel and the world, led by PhD student Gal Finkelstein-Zuta and Prof. Ehud Gazit from the Shmunis School of Biomedicine and Cancer Research at the Faculty of Life Sciences and the Department of Materials Science and Engineering at the Faculty of Engineering at TAU. The results of the research were published last week in the prestigious scientific journal Nature.

(Left to right): Gal Finkelstein-Zuta and Prof. Ehud Gazit.
(Left to right): Gal Finkelstein-Zuta and Prof. Ehud Gazit. Credit: Tel Aviv University

 

Link to the Research Video

Video credit: Video from the Nature article.

“In our laboratory, we study bio-convergence and specifically use the wonderful properties of biology to produce innovative materials,” explains Prof. Gazit. “Among other things, we study sequences of amino acids, which are the building blocks of proteins. Amino acids and peptides have a natural tendency to connect to each other and form ordered structures with a defined periodic arrangement, but during the research, we discovered a unique peptide that behaves differently from anything we know: it didn’t form any ordered pattern but an amorphous, disordered one, that describes glass.”

At the molecular level, glass is a liquid-like substance that lacks order in its molecular structure, but its mechanical properties are solid-like. Glass is usually manufactured by rapidly cooling molten materials and “freezing” them in this state before they are allowed to crystallize, resulting in an amorphous state that allows unique optical, chemical and mechanical properties – alongside durability, versatility, and sustainability. The researchers from TAU discovered that the aromatic peptide, which consists of a three-tyrosine sequence (YYY), forms a molecular glass spontaneously, upon evaporation of an aqueous solution, under room-temperature conditions.

“The commercial glass we all know is created by the rapid cooling of molten materials, a process called vitrification” says Gal Finkelstein-Zuta. “The amorphous liquid-like organization should be fixed before it arranges in a more energy-efficient way as in crystals, and for that energy is required – it should be heated to high temperatures and cooled down immediately. On the other hand, the glass we discovered, which is made of biological building blocks, forms spontaneously at room temperature, without the need of energy such as high heat or pressure. Just dissolve a powder in water – just like making kool-aid, and the glass will form. For example, we made lenses from our new glass. Instead of undergoing a lengthy process of grinding and polishing, we simply dripped a drop onto a surface, where we control its curvature – and hence its focus – by adjusting the solution volume alone.”

The properties of the innovative glass from TAU are unique in the world – and even contradict each other: it is very hard, but it can repair itself at room temperature; It is a strong adhesive, and at the same time it is transparent in a wide spectral range, ranging from the visible light to the mid-infrared range.

“This is the first time anyone has succeeded in creating molecular glass under simple conditions,” says Prof. Gazit, “but not less important than that are the properties of the glass we created. It is a very special glass. On the one hand, it is very strong and on the other hand, very transparent – much more transparent than ordinary glass. The normal silicate glass we all know is transparent in the visible light range, the molecular glass we created is transparent deep into the infrared range. This has many uses in fields such as satellites, remote sensing, communications and optics. It is also a strong adhesive, it can glue different glasses together, and at the same time it can repair cracks that are formed in it. It is a set of properties that does not exist in any glass in the world, which has great potential in science and engineering, and we got all this from a single peptide – one little piece of protein.”

Link to the article:

https://www.nature.com/articles/s41586-024-07408-x

Media Contact

Noga Shahar
Tel-Aviv University
Taupr@tauex.tau.ac.il
Office: 972-547-705-223

www.tau.ac.il

 

Media Contact

Noga Shahar
Tel-Aviv University

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Improving HIV treatment in children and adolescents – the right way!

Globally, around 2.6 million children and adolescents are currently living with HIV, the majority of them in Africa. These young people are much more likely to experience treatment failure than…

Chatbot Iris offers individual support

How can a chatbot support students in lectures and with assigned exercises? Researchers at the Technical University of Munich (TUM) have developed the chatbot Iris, which offers informatics students personalized…

Modular design

New insights into protein factories in human mitochondria. The “power plants” of living cells, the mitochondria, probably evolved through endosymbiosis: A bacterium migrated into a primordial cell and eventually developed…

Partners & Sponsors