Researchers Develop Method for Mapping Neuron Clusters

“We have established a method to find functional groupings of neurons based on co-fluctuation of their responses,” says Roozbeh Kiani, an assistant professor in NYU’s Center for Neural Science and one of the study’s authors. “In doing so, we show that PFC neurons are organized into spatially contiguous maps, much like their counterparts in sensory cortices. The widely accepted notion that orderly spatial maps are restricted to sensory cortices, therefore, needs revision.”

“Our methodology is closely related to the techniques that led to the discovery of functional networks in brain imaging studies,” adds William Newsome, a professor of neurobiology at Stanford University and a Howard Hughes Medical Institute Investigator. “There is, however, a crucial difference. We extend the methodology to cellular scale and demonstrate that it can be used for identifying networks at a neuronal level. By suggesting a potential neural substrate for functional networks in macro-scale brain imaging we bridge a critical gap in our knowledge.”

The research focused on the “parcellation” of PFC neurons: how these cells are grouped together to perform specific functions. The scientists showed that the discovered subnetworks in the prefrontal cortex are linked to the decision-making behavior but seem to have distinct roles: one subnetwork better represents upcoming choices and another one seems to keep track of past choices.

Previous studies that explored spatial organization of neurons in the prefrontal cortex predominantly focused on the average responses of neurons by examining them one at a time. They missed the organization of the network “forest” for the neuron “trees”. In the Neuron paper, the researchers outlined a vastly different method. In it, they focused on the correlated activity of large numbers of simultaneously recorded neurons to spot the larger “topography” of the network—and how their groupings may be linked to the behavior. Specifically, they applied clustering algorithms that discover natural divisions in the matrix of response correlations to divide the recorded neural population.

“This technique provides an innovative, but straightforward, way to delineate cortical networks,” observers Kiani. “The subnetworks in the PFC are stable across behavioral tasks and are apparent even in the spontaneous fluctuations of neural responses. They seem to be largely defined by the intrinsic connectivity of neurons in the local network. Therefore, they provide an objective basis for dividing the cortex into constituent subnetworks, offering a common standard across experiments.”

The study’s other authors include Diogo Peixoto and Christopher Cueva from Stanford University’s Department of Neurobiology and Stephen Ryu, M.D., from the Palo Alto Medical Foundation’s Department of Neurosurgery.

The research was funded, in part, by Howard Hughes Medical Institute, Simons Collaboration on the Global Brain, and the Air Force Research Laboratory (FA9550-07-1-0537).

Contact Information
James Devitt
Deputy Director for Media Relations
james.devitt@nyu.edu
Phone: 212-998-6808

Media Contact

James Devitt newswise

More Information:

http://www.nyu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Urban stormwater detention basin affected by salt pollution and salt-tolerant plants

Going Green: Fighting Freshwater Salt Pollution with Phytoremediation

Salt pollution in freshwater is a growing global concern. Excessive salt harms plants, degrades soil, and compromises water quality. In urban areas, road salts used for de-icing during winter often…

Illustration of leaky gut and inflammation in psoriasis research

Psoriasis Patients at Increased Risk for Crohn’s Due to Gut Inflammation

People with the skin condition psoriasis often have invisible inflammation in the small intestine with an increased propensity for ‘leaky gut’, according to new research at Uppsala University. These changes…

Vials of GLP-1 receptor agonist drugs illustrating benefits and potential risks

Popular Weight-Loss Drugs—Beneficial or Risky?

GLP-1 medications tied to decreased risk of dementia, addiction; increased risk of kidney, pancreas and gastrointestinal problems Growing Public Demand for GLP-1RA Weight-Loss Medications Demand for weight-loss medications sold under…