Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Millimeter-wave radars for efficient industrial sensors

10.04.2018

Fraunhofer IAF presents compact W-band radar at the Hannover Messe 2018

See what is hidden from the human eye. Preserve the view when optical sensors fail. Radars make the invisible visible. Based on millimeter waves penetrating plastics, cardboard, wood and textiles, they are able to see what's inside packaging, behind walls or behind smoke and fog.


The compact w-band radar is about the size of a cigarette box.

© Fraunhofer IAF


Fraunhofer IAF’s exhibit at this year's Hannover Messe shows the use of radar in process automation. Here you can see the 3D model.

© Fraunhofer IAF

Researchers at Fraunhofer IAF have taken advantage of the unique characteristics of millimeter-waves and have developed a compact W-band radar module that is ideally suited for use in industrial sensors: It screens packaged goods and gives precise information about their contents.

The Fraunhofer researchers are going to present the use of this radar in an industrial environment from April 23 to 27 at the Hannover Messe. They will be located at booth C22 in Hall 2, showcasing their radar in the frame of the Research Fab Microelectronics Germany.

With the help of intelligent and digitally networked systems, modern industrial production is becoming increasingly self-organized and self-reliant: people, machines, plants, logistics and products communicate and cooperate with one another and thus optimize individual production steps or even the entire value chain. This vision of Industry 4.0 includes systems that independently make decisions based on the data available to them and perform tasks as autonomously as possible.

The W-band radar developed by the Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg takes industrial automation one step further. The radar inspects packed goods for content and completeness. Based on the results, the system can automatically sort out faulty deliveries of goods before shipping.

The W-band radar developed by Fraunhofer IAF works with millimeter-waves at frequencies of 75 to 110 GHz, the so-called W-band. The emitted millimeter waves penetrate all non-metallic and optically non-transparent materials such as plastic, textiles, paper, wood or even dust, smoke and fog.

Take a look inside

So far, optical sensors such as lasers are mostly used for presence detection in the production process. The disadvantage is that lasers fail in poor visibility conditions and cannot look behind packaging material. The W-band radar, on the other hand, does not only provide high-precision distance measurements in dust, smoke or fog; it even allows a view behind materials and objects.

Like an X-ray machine that allows you to look into the human body, the radar detects what is inside a package or behind a wall. In contrast to X-rays, however, the short-wave rays emitted by the W-band radar in the millimeter range are not harmful to health. The transmission power of the radar is even 100 times smaller than that of a mobile phone.

The combination of the unique properties of millimeter- waves and the compact radar module developed by Fraunhofer IAF offers a wide range of applications beyond industrial sensors. »Radar can be used wherever contact-free material testing, control of packaged goods or high-precision distance measurements under difficult conditions such as restricted visibility are required« says Christian Zech, researcher at Fraunhofer IAF.

The institute has already launched several projects, including safety aspects in human-machine interaction, the use of radar in the harsh environment of a steelwork, and safe landing assistance for helicopters.

Precise, compact and cost-effective technology

The operation of the radar can be compared to that of an echo. The radar emits signals that are reflected by materials and objects. Transmit and receive signals are compared using numerical algorithms and provide information about what is in front of the radar module at what distance. »Despite their advantages, millimeter-wave radar systems have received little market acceptance so far, since low-frequency systems are too large and the production of high-frequency systems is too expensive, « explains Zech.

The development of the Fraunhofer researchers, on the other hand, is compact, cost-effective and has a modular design. Due to the shorter wavelengths of around three millimeters, the entire system is only about the size of a cigarette box. The researchers have succeeded in developing a cost-efficient printed circuit board (PCB)-based assembly and interconnecting technology.

»Our W-band radar is based on the semiconductor gallium arsenide, providing higher bandwidth, resolution, sensitivity and ruggedness than radar systems operating on silicon circuits. This is crucial for many applications« explains Benjamin Baumann, electrical engineer at Fraunhofer IAF.

Take a look at the IAF radar at the Hannover Messe

The researchers are going to present the use of the W-band radar as one element of process automation at the Hannover Messe at the joint Fraunhofer stand in Hall 2, booth C22 in the frame of the Research Fab Microelectronics Germany. The exhibit shows an industrial hall where packaged goods are transported on production lines. The radar screens the packages passing by and checks their contents. Incorrect or incomplete packaging is reported and immediately removed from the logistics chain.

Weitere Informationen:

https://www.iaf.fraunhofer.de/en/media/press-releases/hannover-messe-2018.html
https://www.iaf.fraunhofer.de/en/events/hannover-messe-2018.html

Laura Hau | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>