Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-area polymer films with anti-reflective properties created with roll-to-roll plasma-etching

24.04.2012
Roll-to-roll plasma-etching creates nanostructures for favorable-cost modification of high-area polymer films with anti-reflective properties.
At the international vacuum conference SVC 2012 researchers of Fraunhofer FEP present the PolAR process: A method to provide high-area polymer films with anti-reflective properties.

Rain, darkness, the dazzling lights of an oncoming car - strong light reflection in such situations can be irritating or even become dangerous. Effective anti-reflection is not only important for spectacles and windshields, but also provides optimal light incidence for solar cells, solar heating panels, and triple glazing.
The Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena and the Fraunhofer Institute for Electron Beam and Plasma Technology FEP in Dresden have undertaken a joint project with industrial partners including Leica Microsystems, Rodenstock, and Southwall Europe. The project, entitled PolAR (reference 16/N0723), was funded by the Federal Ministry of Economics and Technology (BMWi) and aimed to develop a new, efficient, continuous roll-to-roll process for making large-area anti-reflecting polymer films.

The optimized plasma-etching process creates a structure on the polymer films, whose effect is based on the moth eye principle. The process enhances the base roughness of the polymer film and generates nanostructures, namely minute crests and troughs. As the nanostructures are smaller than the wavelength of visible light, they do not act as scattering centers and the film remains clear. At the same time, the structures cause the refractive index between the film and external medium to change continuously. That has the consequence that the optical reflection of, for example, PET film is reduced from 12% to 0.2%. Up until now this could only be achieved by complex coating of films with a four-layer anti-reflection system. The flexibility of, in particular, thin films is also adversely affected by the latter. Besides being useful for films, plasma-etching is also suitable for giving curved substrates anti-reflective properties.
Although the moth eye principle has been known for a long time, the Fraunhofer researchers have made a decisive technological breakthrough by generating nanostructures on large surfaces using a process that is suitable for mass production. In roll-to-roll pilot plants, like those used at the Fraunhofer FEP, kilometer-long films can be made anti-reflective at a rate of several meters per minute. Dual magnetron systems, which are usually used in industry for vacuum coating processes, provide an effective and stable ion current over several hours. Using these sources, the base process developed at the Fraunhofer IOF was transferred to high-area substrates at Fraunhofer FEP. The process has already been successfully used on PET films, triacetate cellulose (TAC) films, fluoropolymer films (ETFE), and lacquered films.

Interested parties can visit our booth (no. 904) at the SVC 2012 conference in Santa Clara (California / USA) from 1 May to 3 May to see the anti-reflective films.

Scientific contact:
Dr. Matthias Fahland
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-135
matthias.fahland@fep.fraunhofer.de

Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer Institut
Further information:
http://www.fep.fraunhofer.de

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>