Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using shark scales to design better drones, planes, and wind turbines

07.02.2018

Bioinspired vortex generators increase airfoil lift, decrease drag

To build more aerodynamic machines, researchers are drawing inspiration from an unlikely source: the ocean.


A team of evolutionary biologists and engineers at Harvard, have demonstrated a new, structure inspired by shark skin that could improve the aerodynamic performance of planes, wind turbines, drones and cars.

Image courtesy of James Weaver/Havard University

A team of evolutionary biologists and engineers at Harvard University, in collaboration with colleagues from the University of South Carolina, have shed light on a decades-old mystery about sharkskin and, in the process, demonstrated a new, bioinspired structure that could improve the aerodynamic performance of planes, wind turbines, drones and cars.

The research is published in the Journal of the Royal Society Interface.

Sharks and airplanes aren't actually all that different. Both are designed to efficiently move through fluid (water and air), using the shape of their bodies to generate lift and decrease drag. The difference is, sharks have about a 400 million-year head start on the design process.

"The skin of sharks is covered by thousands and thousands of small scales, or denticles, which vary in shape and size around the body," said George Lauder, the Henry Bryant Bigelow Professor of Ichthyology and Professor of Biology in the Department of Organismic and Evolutionary Biology, and co-author of the research. "We know a lot about the structure of these denticles -- which are very similar to human teeth -- but the function has been debated."

Most research has focused on the drag reducing properties of denticles but Lauder and his team wondered if there was more to the story.

"We asked, what if instead of mainly reducing drag, these particular shapes were actually better suited for increasing lift," said Mehdi Saadat, a postdoctoral fellow at Harvard and co-first author of the study. Saadat holds a joint appointment in Mechanical Engineering at the University of South Carolina.

To help test that hypothesis, the researchers collaborated with a team of engineers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). For inspiration, they turned to the shortfin mako, the fastest shark in the world. The mako's denticles have three raised ridges, like a trident. Using micro-CT scanning, the team imaged and modeled the denticles in three dimensions. Next, they 3-D printed the shapes on the surface of a wing with a curved aerodynamic cross-section, known as an airfoil.

"Airfoils are a primary component of all aerial devices," said August Domel, a Ph.D. student at Harvard and co-first author of the paper. "We wanted to test these structures on airfoils as a way of measuring their effect on lift and drag for applications in the design of various aerial devices such as drones, airplanes, and wind turbines."

The researchers tested 20 different configurations of denticle sizes, rows and row positions on airfoils inside a water flow tank. They found that in addition to reducing drag, the denticle-shaped structures significantly increased lift, acting as high-powered, low-profile vortex generators.

Even if you don't know what a vortex generator is, you've seen one in action. Cars and planes are equipped with these small, passive devices designed to alter the air flow over the surface of a moving object to make it more aerodynamic. Most vortex generators in the field today have a simple, blade-like design.

"These shark-inspired vortex generators achieve lift-to-drag ratio improvements of up to 323 percent compared to an airfoil without vortex generators," said Domel. "With these proof of concept designs, we've demonstrated that these bioinspired vortex generators have the potential to outperform traditional designs."

"You can imagine these vortex generators being used on wind turbines or drones to increase the efficiency of the blades," said Katia Bertoldi, William and Ami Kuan Danoff Professor of Applied Mechanics at SEAS and co-author of the study. "The results open new avenues for improved, bioinspired aerodynamic designs."

"This research not only outlines a novel shape for vortex generators but also provides insight into the role of complex and potentially multifunctional shark denticles," said Lauder.

###

The Harvard Office of Technology Development has protected the intellectual property relating to this project and is exploring commercialization opportunities.

The research was co-authored by James Weaver of the Wyss Institute for Biologically Inspired Engineering at Harvard, and Hossein Haj-Hariri, Dean of Engineering and Computing at the University of South Carolina. This research was supported by Office of Naval Research and the National Science Foundation.

Media Contact

Leah Burrows
lburrows@seas.harvard.edu
617-496-1351

 @hseas

http://www.seas.harvard.edu/ 

Leah Burrows | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht New electro-pulse plant at TU Freiberg enables energy-efficient processing of high-tech metals
23.01.2020 | Technische Universität Bergakademie Freiberg

nachricht Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena
22.01.2020 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>