Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Stealth' material hides hot objects from infrared eyes

25.06.2018

Infrared cameras are the heat-sensing eyes that help drones find their targets even in the dead of night or through heavy fog.

Hiding from such detectors could become much easier, thanks to a new cloaking material that renders objects -- and people -- practically invisible.


A newly developed stealth sheet can hide hot objects like human bodies or military vehicles from infrared cameras.

PHOTO BY HONGRUI JIANG

"What we have shown is an ultrathin stealth 'sheet.' Right now, what people have is much heavier metal armor or thermal blankets," says Hongrui Jiang, professor of electrical and computer engineering at the University of Wisconsin-Madison.

Warm objects like human bodies or tank engines emit heat as infrared light. The new stealth sheet, described this week in the research journal Advanced Engineering Materials, offers substantial improvements over other heat-masking technologies.

"It's a matter of the weight, the cost and ease of use," says Jiang.

Less than one millimeter thick, the sheet absorbs approximately 94 percent of the infrared light it encounters. Trapping so much light means that warm objects beneath the cloaking material become almost completely invisible to infrared detectors.

Importantly, the stealth material can strongly absorb light in the so-called mid- and long-wavelength infrared range, the type of light emitted by objects at approximately human body temperature.

By incorporating electronic heating elements into the stealth sheet, the researchers have also created a high-tech disguise for tricking infrared cameras.

"You can intentionally deceive an infrared detector by presenting a false heat signature," says Jiang. "It could conceal a tank by presenting what looks like a simple highway guardrail."

To trap infrared light, Jiang and colleagues turned to a unique material called black silicon, which is commonly incorporated into solar cells. Black silicon absorbs light because it consists of millions of microscopic needles (called nanowires) all pointing upward like a densely-packed forest. Incoming light reflects back and forth between the vertical spires, bouncing around within the material instead of escaping.

Although black silicon has long been known to absorb visible light, Jiang and colleagues were the first to see the material's potential for trapping infrared. They boosted its absorptive properties by tweaking the method through which they created their material.

"We didn't completely reinvent the whole process, but we did extend the process to much taller nanowires," says Jiang, who developed the material in National Science Foundation-supported facilities at UW-Madison.

They make those nanowires by using tiny particles of silver to help etch down into a thin layer of solid silicon, which results in a thicket of tall needles. Both the nanowires and the silver particles contribute to absorbing infrared light.

The researchers' black silicon also has a flexible backing interspersed with small air channels. Those air channels prevent the stealth sheet from heating up too quickly as it absorbs infrared light.

###

Jiang and colleagues are working to scale up their prototype for real-world applications with assistance from UW-Madison's Discovery to Product program. They received a U.S. patent in the fall for the material's use in stealth. The Wisconsin Alumni Research Foundation supported the research through its Robert Draper Technology Innovation Fund, and is actively pursuing two additional patent applications.

Media Contact

Hongrui Jiang
hongrui@engr.wisc.edu
608-265-9418

 @UWMadScience

http://www.wisc.edu 

Hongrui Jiang | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht New Record: PLQE of 70.3% in lead-free halide double perovskites
22.07.2019 | Science China Press

nachricht First-ever visualizations of electrical gating effects on electronic structure
18.07.2019 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>