Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Stealth' material hides hot objects from infrared eyes

25.06.2018

Infrared cameras are the heat-sensing eyes that help drones find their targets even in the dead of night or through heavy fog.

Hiding from such detectors could become much easier, thanks to a new cloaking material that renders objects -- and people -- practically invisible.


A newly developed stealth sheet can hide hot objects like human bodies or military vehicles from infrared cameras.

PHOTO BY HONGRUI JIANG

"What we have shown is an ultrathin stealth 'sheet.' Right now, what people have is much heavier metal armor or thermal blankets," says Hongrui Jiang, professor of electrical and computer engineering at the University of Wisconsin-Madison.

Warm objects like human bodies or tank engines emit heat as infrared light. The new stealth sheet, described this week in the research journal Advanced Engineering Materials, offers substantial improvements over other heat-masking technologies.

"It's a matter of the weight, the cost and ease of use," says Jiang.

Less than one millimeter thick, the sheet absorbs approximately 94 percent of the infrared light it encounters. Trapping so much light means that warm objects beneath the cloaking material become almost completely invisible to infrared detectors.

Importantly, the stealth material can strongly absorb light in the so-called mid- and long-wavelength infrared range, the type of light emitted by objects at approximately human body temperature.

By incorporating electronic heating elements into the stealth sheet, the researchers have also created a high-tech disguise for tricking infrared cameras.

"You can intentionally deceive an infrared detector by presenting a false heat signature," says Jiang. "It could conceal a tank by presenting what looks like a simple highway guardrail."

To trap infrared light, Jiang and colleagues turned to a unique material called black silicon, which is commonly incorporated into solar cells. Black silicon absorbs light because it consists of millions of microscopic needles (called nanowires) all pointing upward like a densely-packed forest. Incoming light reflects back and forth between the vertical spires, bouncing around within the material instead of escaping.

Although black silicon has long been known to absorb visible light, Jiang and colleagues were the first to see the material's potential for trapping infrared. They boosted its absorptive properties by tweaking the method through which they created their material.

"We didn't completely reinvent the whole process, but we did extend the process to much taller nanowires," says Jiang, who developed the material in National Science Foundation-supported facilities at UW-Madison.

They make those nanowires by using tiny particles of silver to help etch down into a thin layer of solid silicon, which results in a thicket of tall needles. Both the nanowires and the silver particles contribute to absorbing infrared light.

The researchers' black silicon also has a flexible backing interspersed with small air channels. Those air channels prevent the stealth sheet from heating up too quickly as it absorbs infrared light.

###

Jiang and colleagues are working to scale up their prototype for real-world applications with assistance from UW-Madison's Discovery to Product program. They received a U.S. patent in the fall for the material's use in stealth. The Wisconsin Alumni Research Foundation supported the research through its Robert Draper Technology Innovation Fund, and is actively pursuing two additional patent applications.

Media Contact

Hongrui Jiang
hongrui@engr.wisc.edu
608-265-9418

 @UWMadScience

http://www.wisc.edu 

Hongrui Jiang | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>