Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new structural view of organic electronic devices

13.09.2005


Although still in the qualifying rounds, U.S. researchers are helping manufacturers win the race to develop low-cost ways to commercialize a multitude of products based on inexpensive organic electronic materials--from large solar-power arrays to electronic newspapers that can be bent and folded.



In the on-line issue of Advanced Materials,* researchers from the National Institute of Standards and Technology (NIST) and the University of California at Berkeley report success in using a non-destructive measurement method to detail three structural properties crucial to making reliable electronic devices with thin films of the carbon-rich (organic) semiconductors. The new capability could help industry clear hurdles responsible for high manufacturing development costs that stand in the way of widespread commercial application of the materials.

With the technique called near-edge X-ray absorption fine-structure spectroscopy, or NEXAFS, the team tracked chemical reactions, molecular reordering and defect formation over a range of processing temperatures.


They then evaluated how process-induced changes in thin-film composition and structure affected the movement of charge carriers (either electrons or electron "holes") in organic field effect transistors, devices basic to electronic circuits. With NEXAFS measurements taken over the range from room temperature to 300 degrees Celsius, the team monitored the conversion of a precursor chemical to an oligothiophene, an organic semiconductor. The molecular organization and composition achieved at 250 degrees Celsius yielded the highest levels of charge carrier movement and, consequently, maximum electric-current flow.

As chemical conversion progressed, the researchers calculated how the molecules arranged themselves on top of an electrical insulator. Top transistor performance corresponded to a vertical alignment of molecules. In addition, they used NEXAFS to determine the angles of chemical bonds and to assess the thickness and uniformity of film coverage, also critical to performance.

NEXAFS has the potential to be the "ideal measurement platform for systematic investigation" of organic electronic materials, says lead investigator Dean DeLongchamp, a NIST materials scientist. "A straightforward means of correlating chemical and physical structure to the electronic performance of organic semiconductor films is a much-needed tool."

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>