Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Overcome Barrier to Shrinking Wireless Devices

23.07.2004


James Bond-style technologies such as cell phones the size of earpieces and invisible sensors sprinkled about to detect toxins are closer to reality. University of Michigan researchers have figured out how to build wireless systems even smaller while still retaining range and power efficiency.

One obstacle to further shrink small wireless devices has been trying to fit all the components onto one chip but U-M researchers have built a tiny silicon-compatible antenna and frequency resonator that will do just that.

The antenna and resonator are two of the most problematic off-chip components in wireless systems. The two components require large amounts of space off the chip---think of a cell phone antenna extending outward---thus limiting how small a device can be built.



Until now, small antennas weren’t power efficient and resonators were not accurate, said Kamal Sarabandi, director of the radiation laboratory department in electrical engineering and computer science (EECS). His research group developed the antenna.

The technology is being developed for use in environmental sensors, but could be applied to cell phones, laptops and other wireless devices, said Michael Flynn, head of the wireless interface group. "We could have cell phones almost the size of an earpiece," Flynn said. "You could have sensor nodes that are almost invisible, you could just sprinkle them around."

Rather than using a traditional wire antenna, researchers built a slot antenna. In a slot antenna, instead of the metal wire, imagine covering an entire plane with metal, leaving only a slot or groove in the metal bare. Wire surrounds the groove so it’s much more effective at radiating electromagnetic waves in a small antenna, Sarabandi said. Because of the antenna’s shape, the wireless system does not need a network to match the antenna’s frequency to the rest of the electronic device.

Sarabandi’s group has been talking with Intel about a possible collaboration. Intel is interested in using the technology in laptop computers, Sarabandi said.

The second component U-M scientists replaced is the quartz frequency resonator, which allows a wireless device to focus on a specific signal and ignore others. The work was done by EECS associate professor Clark Nguyen’s group.

Instead of quartz, U-M scientists used MEMS-based technology to build the resonator so it can be fitted onto the chip. It functions similarly to how the rim of a wine glass thrums when flicked by a finger. The wine-glass rim design helps retain the purity of the signal.

| newswise
Further information:
http://www.engin.umich.edu

More articles from Power and Electrical Engineering:

nachricht Could water solve the renewable energy storage challenge?
19.02.2020 | International Institute for Applied Systems Analysis (IIASA)

nachricht A step towards controlling spin-dependent petahertz electronics by material defects
19.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Time-resolved measurement in a memory device

19.02.2020 | Physics and Astronomy

Mixed-signal hardware security thwarts powerful electromagnetic attacks

19.02.2020 | Information Technology

Could water solve the renewable energy storage challenge?

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>