Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OLED integration in textiles: functional and eye-catching

10.09.2018

Organic light-emitting diodes (OLED) are mainly known from televisions and smartphone displays. They can be used as lighting objects in car tail lights or lights. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as a partner for customer-specific OLED development and production is now presenting OLED elements that can be integrated into textiles at the Electronics System Integration Technology Conference ESTC 2018 from September 18 - 21, 2018 in Dresden at booth no. 29.

The versatile OLEDs can not only light in color, they can also be designed in any shape and even transparent or dimmable. Applied on wafer-thin foils, they are now finding their way into textiles. The range of applications is diverse and not limited to fashion trends or distinctive brand and design elements.


O-BUTTON, customer-specific OLED elements for textile integration

© Fraunhofer FEP, Photograph: Jan Hesse | Picture in printable resolution: www.fep.fraunhofer.de/press

Jan Hesse, OLED design and integration specialist in the field of flexible organic electronics at Fraunhofer FEP, draws a vision: "The integration of luminous elements in clothing not only freshens up fashion designs, it can also create very concrete benefits:

Luminous logos or applications are more easily noticed and considerably increase the visibility and thus the safety of the wearer, e.g. in road traffic.” Their use would be conceivable, for example in workwear for night logistics.

Since scientists can adapt OLEDs to specific wavelength ranges, special applications such as in medicine are also conceivable. Infrared light, for example, is successful in the therapy of skin diseases. There is the possibility of shirts with integrated flat infrared lights to be used for light therapy.

To simplify the integration of OLED elements in clothing and to give designers the opportunity to use the technology in an uncomplicated way, the scientists at the Fraunhofer FEP have developed a functional button. This "O-button" combines a wafer-thin foil-based OLED with a microcontroller on a conventional circuit board.

This circuit board in the shape of a button is attached to the textile with conductive yarn and supplied or controlled with electrical power. The OLED itself is continuously dimmable. Two-color-variable variants of the button are also available.

There are almost no limits to the structuring of OLEDs. The textiles finished in this way are supposed to give designers ideas for new innovative designs and thereby open up further areas of application.

Fraunhofer FEP provides samples of the "O-BUTTON" for this purpose, can convert individualized designs into initial prototypes and can be a partner up to pilot production. Scientists are already collaborating with designers in the fashion industry.

Challenges regarding further textile integration, washability or recycling are tackled and further developed together with partners. The first OLED fashion will be on display in stores in about three years.

Fraunhofer FEP at the ESTC 2018

Exhibition:
Fraunhofer FEP, Booth No. 29

Lecture:
Tuesday, September 18, 2018
Session FE1
3:15 pm: Conductors and transistors for biodegradable devices
Dr. Michael Hoffmann, Fraunhofer FEP

Poster:
Wednesday, September 19, 2018
Interactive Session INTS2B
10:45 am: Integration of Lighting Functionality
within Textiles by Flexible OLED,
Jan Hesse, Fraunhofer FEP

More information about O-BUTTON: http://s.fhg.de/rNz

Press contact:
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Winterbergstraße 28 | 01277 Dresden, Germany | www.fep.fraunhofer.de
Head of Marketing: Ines Schedwill | Phone +49 351 8823-238 | ines.schedwill@fep.fraunhofer.de
Head of Corporate Communications: Annett Arnold, M.Sc. | Phone +49 351 2586-333 | annett.arnold@fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/rNz
http://s.fhg.de/tnn

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Power and Electrical Engineering:

nachricht Record efficiency for printed solar cells
09.07.2020 | Swansea University

nachricht Bespoke catalysts for power-to-X
09.07.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

Goodbye Absorbers: High-Precision Laser Welding of Plastics

10.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>