Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OLED integration in textiles: functional and eye-catching

10.09.2018

Organic light-emitting diodes (OLED) are mainly known from televisions and smartphone displays. They can be used as lighting objects in car tail lights or lights. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as a partner for customer-specific OLED development and production is now presenting OLED elements that can be integrated into textiles at the Electronics System Integration Technology Conference ESTC 2018 from September 18 - 21, 2018 in Dresden at booth no. 29.

The versatile OLEDs can not only light in color, they can also be designed in any shape and even transparent or dimmable. Applied on wafer-thin foils, they are now finding their way into textiles. The range of applications is diverse and not limited to fashion trends or distinctive brand and design elements.


O-BUTTON, customer-specific OLED elements for textile integration

© Fraunhofer FEP, Photograph: Jan Hesse | Picture in printable resolution: www.fep.fraunhofer.de/press

Jan Hesse, OLED design and integration specialist in the field of flexible organic electronics at Fraunhofer FEP, draws a vision: "The integration of luminous elements in clothing not only freshens up fashion designs, it can also create very concrete benefits:

Luminous logos or applications are more easily noticed and considerably increase the visibility and thus the safety of the wearer, e.g. in road traffic.” Their use would be conceivable, for example in workwear for night logistics.

Since scientists can adapt OLEDs to specific wavelength ranges, special applications such as in medicine are also conceivable. Infrared light, for example, is successful in the therapy of skin diseases. There is the possibility of shirts with integrated flat infrared lights to be used for light therapy.

To simplify the integration of OLED elements in clothing and to give designers the opportunity to use the technology in an uncomplicated way, the scientists at the Fraunhofer FEP have developed a functional button. This "O-button" combines a wafer-thin foil-based OLED with a microcontroller on a conventional circuit board.

This circuit board in the shape of a button is attached to the textile with conductive yarn and supplied or controlled with electrical power. The OLED itself is continuously dimmable. Two-color-variable variants of the button are also available.

There are almost no limits to the structuring of OLEDs. The textiles finished in this way are supposed to give designers ideas for new innovative designs and thereby open up further areas of application.

Fraunhofer FEP provides samples of the "O-BUTTON" for this purpose, can convert individualized designs into initial prototypes and can be a partner up to pilot production. Scientists are already collaborating with designers in the fashion industry.

Challenges regarding further textile integration, washability or recycling are tackled and further developed together with partners. The first OLED fashion will be on display in stores in about three years.

Fraunhofer FEP at the ESTC 2018

Exhibition:
Fraunhofer FEP, Booth No. 29

Lecture:
Tuesday, September 18, 2018
Session FE1
3:15 pm: Conductors and transistors for biodegradable devices
Dr. Michael Hoffmann, Fraunhofer FEP

Poster:
Wednesday, September 19, 2018
Interactive Session INTS2B
10:45 am: Integration of Lighting Functionality
within Textiles by Flexible OLED,
Jan Hesse, Fraunhofer FEP

More information about O-BUTTON: http://s.fhg.de/rNz

Press contact:
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Winterbergstraße 28 | 01277 Dresden, Germany | www.fep.fraunhofer.de
Head of Marketing: Ines Schedwill | Phone +49 351 8823-238 | ines.schedwill@fep.fraunhofer.de
Head of Corporate Communications: Annett Arnold, M.Sc. | Phone +49 351 2586-333 | annett.arnold@fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/rNz
http://s.fhg.de/tnn

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Power and Electrical Engineering:

nachricht First-ever visualizations of electrical gating effects on electronic structure
18.07.2019 | University of Warwick

nachricht New safer, inexpensive way to propel small satellites
16.07.2019 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>