Nanocables light way to the future

Cables made of carbon nanotubes are inching toward electrical conductivities seen in metal wires, and that may light up interest among a range of industries, according to Rice University researchers.

A Rice lab made such a cable from double-walled carbon nanotubes and powered a fluorescent light bulb at standard line voltage — a true test of the novel material's ability to stake a claim in energy systems of the future.

The work appears this week in the Nature journal Scientific Reports.

Highly conductive nanotube-based cables could be just as efficient as traditional metals at a sixth of the weight, said Enrique Barrera, a Rice professor of mechanical engineering and materials science. They may find wide use first in applications where weight is a critical factor, such as airplanes and automobiles, and in the future could even replace traditional wiring in homes.

The cables developed in the study are spun from pristine nanotubes and can be tied together without losing their conductivity. To increase conductivity of the cables, the team doped them with iodine and the cables remained stable. The conductivity-to-weight ratio (called specific conductivity) beats metals, including copper and silver, and is second only to the metal with highest specific conductivity, sodium.

Yao Zhao, who recently defended his dissertation toward his doctorate at Rice, is the new paper's lead author. He built the demo rig that let him toggle power through the nanocable and replace conventional copper wire in the light-bulb circuit.

Zhao left the bulb burning for days on end, with no sign of degradation in the nanotube cable. He's also reasonably sure the cable is mechanically robust; tests showed the nanocable to be just as strong and tough as metals it would replace, and it worked in a wide range of temperatures. Zhao also found that tying two pieces of the cable together did not hinder their ability to conduct electricity.

The few centimeters of cable demonstrated in the present study seems short, but spinning billions of nanotubes (supplied by research partner Tsinghua University) into a cable at all is quite a feat, Barrera said. The chemical processes used to grow and then align nanotubes will ultimately be part of a larger process that begins with raw materials and ends with a steady stream of nanocable, he said. The next stage would be to make longer, thicker cables that carry higher current while keeping the wire lightweight. “We really want to go better than what copper or other metals can offer overall,” he said.

The paper's co-authors are Tsinghua researcher Jinquan Wei, who spent a year at Rice partly supported by the Armchair Quantum Wire Project of Rice University’s Smalley Institute for Nanoscale Science and Technology; Robert Vajtai, a Rice faculty fellow in mechanical engineering and materials science; and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Mechanical Engineering and Materials Science and professor of chemistry and chemical and biomolecular engineering.

The Research Partnership to Secure Energy for America, the Department of Energy and Air Force Research Laboratory supported the project.

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors