Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for estimating thermal comfort in low-energy buildings at the design stage

18.12.2012
Indoor environments that are too hot, too cold or draughty create discomfort and lower human productivity. MSc (Tech) Riikka Holopainen from VTT Technical Research Centre of Finland, has written a doctoral thesis on a new method for estimating the actual level of human thermal comfort in low-energy buildings.

The method is also the first of its kind to be integrated with a building simulation tool. Factoring in the different ways in which buildings are used and the different kinds of people using them at the design stage can help to improve energy efficiency and human comfort.

Energy-efficient passive and zero-energy buildings require considerably less heating than traditional buildings. Traditional HVAC solutions are therefore no longer suitable for designing indoor environments for low-energy buildings.

The Human Thermal Model (HTM) is a new technique developed by Senior Scientist Riikka Holopainen from VTT in her doctoral thesis, which can be used to design and create optimal indoor environments for low-energy buildings. One of the novelties of the method is the fact that it allows scientists to measure how different solutions are likely to affect human thermal comfort and the energy efficiency of buildings at the design stage.

The model is based on the physiological thermal control system of the human body, and it can be used to calculate the actual level of human thermal comfort in both steady-state and transient thermal environments. The thesis introduces the first ever mathematical application that integrates a building simulation tool with human thermal sensation. The model also produces information about previously complex comparisons, such as the effects of different structural solutions and HVAC systems on human thermal sensation.

Earlier models for measuring the comfort of indoor environments have not taken account of the human body’s own thermal control system. These methods are also insufficient for designing passive and zero-energy buildings. Models based on laboratory measurements, for example, overestimate the heat perceived by humans in warm conditions and underestimate it in cool conditions. They also factor in clothing as a hermetically sealed unit similar to a diving suit.

Both internal and external factors affect human thermal sensation. Internal factors include personal characteristics, anatomy, activity level, whether work is physical, and clothing. External factors include room temperature, which covers air and surface temperature, as well as air velocity and relative humidity. Holopainen has demonstrated that the most important factors contributing to thermal sensation and comfort are air and surface temperature, activity level and clothing.

Ensuring building optimisation and human comfort at the design stage
Indoor environments that are too hot, too cold or draughty create discomfort and lower human productivity. Bed-bound patients in hospitals, for example, spend a great deal of time lying still and therefore need a sufficiently warm indoor environment and bedclothes. Checkout operators in shops, on the other hand, may have to sit in heat in summer and in cold and draughts in winter. Factoring in the different ways in which buildings are used and the different kinds of people using them at the design stage can help to optimise indoor environments and improve human comfort. Employees can also be given clothing advice.

The Human Thermal Model is suitable for both new builds and renovations. Engineering firms and the construction industry can now develop their products to better meet the needs of different buildings and users.

In the future, the HTM and building automation systems will work together to automatically regulate ventilation, heating and cooling according to actual needs, incorporating human thermal comfort as an integral aspect of workplace productivity enhancement.

The doctoral thesis ‘A human thermal model for improved thermal comfort’ is available online at http://www.vtt.fi/inf/pdf/science/2012/S23.pdf .

For more information, please contact:
VTT Technical Research Centre of Finland
Riikka Holopainen
Senior Scientist
Tel. +358 40 571 0364
riikka.holopainen@vtt.fi
Further information on VTT:
Sakari Sohlberg, Manager, External Communications
Tel. 358 20 722 6744
sakari.sohlberg@vtt.fi
VTT - 70 years of technology for business and society
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT’s turnover is EUR 290 million and itspersonnel totals 3,100.

Sakari Sohlberg | VTT Info
Further information:
http://www.vtt.fi

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>