Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State engineers helping develop energy-harvesting radios

18.12.2008
If changing the batteries in the remote control or smoke detector seems like a chore, imagine having to change hundreds of batteries in sensors scattered across a busy bridge.

That's why Kansas State University engineers are helping a semiconductor manufacturer implement its idea of an energy-harvesting radio. It could transmit important data -- like stress measurements on a bridge, for instance -- without needing a change of batteries, ever.

Bill Kuhn, K-State professor of electrical and computer engineering, and Xiaohu Zhang, master's student in electrical engineering, are developing an energy-harvesting radio for Peregrine Semiconductor, a San Diego-based integrated circuit manufacturer.

"This type of radio technology may exist in your house, for instance if you have a temperature sensor outside that radios data to a display inside," Kuhn said. "But those devices need to have their batteries changed. This radio doesn't."

Peregrine Semiconductor is looking at possible applications for the technology. This could include monitoring stress, temperature and pressure on bridges and other structures. Ron Reedy, Peregrine's chief technical officer, said that fulfilling this vision of autonomous sensors requires highly integrated, low power radio chips -- exactly the kind that K-State and Peregrine have demonstrated to NASA's Jet Propulsion Laboratory on Peregrine's trademarked UltraCMOS silicon-on-sapphire technology.

Meanwhile, the K-State engineers are looking at the design challenges of a radio system like this. Kuhn and Zhang have been working on the project for a little more than a year. They are creating a demonstration to test how far the signals can travel from the sensors.

Zhang constructed a demonstration board using solar cells from inexpensive calculators to power the radio. The board has capacitors that capture and store the light energy to power the radio without a battery. Although this prototype captures and stores light energy, Kuhn said that energy-harvesting radios could be powered by a number of different ways, including by electrochemical, mechanical or thermal energy.

The demonstration board that Zhang created includes a microprocessor to store data before it's transmitted via radio. The radio used is the "Mars chip" that Kuhn helped develop in a successful project he and a team from K-State, Cal Tech's Jet Propulsion Laboratory and Peregrine Semiconductor did for NASA. They developed a micro transceiver to use on Mars rovers and scouts. In 2007, the work was published in Proceedings of the Institute of Electrical and Electronics Engineers.

In this way, Kuhn said the energy-harvesting radio they are working on now is an example of a NASA spinoff -- that is, technology developed for space exploration that can be used here on Earth.

When the stored data is ready to be transmitted, the radio sends out a data-burst. In Zhang's model, this happens every five seconds. It may just sound like a "blip," but that burst contains data that a computer can translate into meaningful information, such as telling an engineer the stress or strain on the underside of a bridge. Kuhn said that it's kind of like sending a text message from one cell phone to another: After data are transmitted through the air, the recipient's cell phone turns that data back into text that can be understood.

Kuhn and Zhang are stepping in to perfect the radio system design. This includes determining which frequencies to use based on how the environment affects radio waves indoors versus outdoors. They also have to look at how noise and other factors may limit the sensitivity of the receiver that's getting the data from all of the sensors.

Because these sensors save data in their microprocessors, Kuhn and Zhang are working on timing and wake-up commands that tell the sensors when to send the stored information to the receiver. Through engineering analysis, they are determining tradeoffs between power requirements, data-rate and transmission range issues.

Kuhn and Zhang will present research on the radio communication aspects of the project at the Radio and Wireless Symposium in January 2009.

Bill Kuhn | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>