Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Body Electric: Researchers Move Closer to Low-Cost, Implantable Electronics

10.06.2013
Aiding Organ Transplants to be First Application of New Technology

New technology under development at The Ohio State University is paving the way for low-cost electronic devices that work in direct contact with living tissue inside the body.

The first planned use of the technology is a sensor that will detect the very early stages of organ transplant rejection.

Paul Berger, professor of electrical and computer engineering and physics at Ohio State, explained that one barrier to the development of implantable sensors is that most existing electronics are based on silicon, and electrolytes in the body interfere with the electrical signals in silicon circuits. Other, more exotic semiconductors might work in the body, but they are more expensive and harder to manufacture.

“Silicon is relatively cheap… it’s non-toxic,” Berger said. “The challenge is to bridge the gap between the affordable, silicon-based electronics we already know how to build, and the electrochemical systems of the human body.”

In a paper in the journal Electronics Letters, Berger and his colleagues describe a new, patent-pending coating that that they believe will bridge that gap.

In tests, silicon circuits that had been coated with the technology continued to function, even after 24 hours of immersion in a solution that mimicked typical body chemistry.

The project began when Berger talked to researchers in Ohio State’s Department of Biomedical Engineering, who wanted to build an insertable sensor to detect the presence of proteins that mark the first signs of organ rejection in the body. They were struggling to make a working protein sensor from gallium nitride.

“We already have sensors that would do a great job at detecting these proteins, but they’re made out of silicon. So I wondered if we could come up with a coating that would protect silicon and allow it to function while it directly touched blood, bodily fluids or living tissue,” Berger said.

In the body, electrolytes such as sodium and potassium control nerves and muscles and maintain hydration. They do this by carrying a positive or negative electric charge that spurs important chemical reactions. But those same charges make the electrolytes attractive to silicon, which will readily absorb them. Once inside, the charges alter the electronic behavior of the silicon so that the readings of a sensor can’t be trusted.

In the study, Berger’s team tested whether electrolytes could be blocked from entering silicon with a layer of aluminum oxide.

The researchers submerged the coated test sensors in fluid for up to 24 hours, removed them from the solution, and then ran a voltage across them to see if they were working properly. The tests showed that the oxide coating effectively blocked electrolytes from the solution so the sensors remained fully functional.

Once developed, a device using this technology could detect certain proteins that the body produces when it’s just beginning to reject a transplanted organ. Doctors would insert a needle into the patient’s body near the site of the implanted organ. Silicon sensors on the needle would detect the protein, and doctors would know how to tailor the patient’s dosage of anti-rejection drugs based on the sensor readings.

The work represents a first step toward fabricating devices that could be implanted in the body long-term, Berger said.

Though the current study describes a silicon sensor coated with aluminum oxide, he envisions that other devices could utilize coatings made from other materials such as titanium. Such coatings could even be tailored to boost the performance of sensors or other biomedical devices.

In particular, Berger sees a potential use for coated polymer semiconductors that goes beyond sensing chemicals in the body. He suspects that such semiconductors could replace nerves in the body that have been damaged by disease or injury.

“We could replace a damaged nerve with an artificial neuron and restore functionality immediately, and that’s a really exciting possibility,” he said.

Berger’s team is working with Ohio State researchers Tom Rosol, professor of veterinary biosciences, and Phillip Popovich, professor of neuroscience, to explore that possibility.

Coauthors on the Electronics Letters paper included former doctoral students Anisha Ramesh, Fang Ren, Patricia Casal and Samit Gupta; current doctoral student in biomedical engineering Andrew Theiss, and Stephen Lee, associate professor of biomedical engineering. The university will license this technology for further development.

Contact: Paul R. Berger, (614) 247-6235; pberger@ieee.org
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>