Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Glimpse into Real-Time Methanol Synthesis: Dynamic Operation of a Miniplant at Fraunhofer ISE

07.05.2020

Methanol will gain importance as a chemical energy carrier in the course of the energy transformation. As part of the "Power-to-Methanol – Green Methanol" project, the Fraunhofer Institute for Solar Energy Systems ISE successfully commissioned a miniplant for methanol synthesis – the production of methanol from hydrogen and CO2 – in December 2019. Featuring a measurement technique with high temporal and spatial resolution, the setup enables researching methanol synthesis, among other things, within the framework of so-called Power to Liquid processes on an industrial scale.

Here, the main focus of the investigations is on dynamic reactor operation and unconventional gas compositions using hydrogen produced by electrolysis and gas streams containing CO2.
With an annual production of over 100 million metric tons, methanol is already one of the most important commodity chemicals worldwide.


Scale-down miniplant for research on methanol synthesis at Fraunhofer ISE.

Picture: Fraunhofer ISE

Conventional production processes based on fossil raw materials such as natural gas, coal or crude oil have reached technical maturity over the past decades, but cause high CO2 emissions.

"In contrast, methanol synthesis in so-called Power to Liquid processes offers the potential to bind CO2 from biomass, for example, and to reuse it," explains Dr.-Ing. Achim Schaadt, head of the Thermochemical Processes department at Fraunhofer ISE.

The "Power-to-Methanol – Green Methanol" project, which is funded by the German Federal Ministry for Economic Affairs and Energy and led by DECHEMA e. V., is researching this type of alternative.

The industrial partners are CropEnergies AG, a member of the Südzucker Group, the specialty chemicals group Clariant and thyssenkrupp Industrial Solutions AG. Academic partners are the Fraunhofer Institutes IGB and UMSICHT and the TU Bergakademie Freiberg.

"The project aim is a scientific and economic examination of the feasibility of a methanol synthesis using renewable electricity and biogenic CO2 from a biorefinery that produces renewable ethanol,” says project leader Max Hadrich, head of the Power to Liquids team at Fraunhofer ISE.

Investigations on the Dynamics of Methanol Synthesis

The miniplant converts hydrogen and CO2 to methanol in a continuous process. In this reaction, heat is released and water is produced as a by-product. A number of questions still need to be answered, however, before this process in combination with a biorefinery can be implemented on an industrial scale.

For example, such high CO2 contents in the synthesis gas lead to accelerated aging of the catalyst and to lower chemical yields. Furthermore, fluctuations both in the amount of hydrogen produced by renewables and in the process for the provision of CO2 may require dynamic synthesis operation.

"This results in a wide range of combinations of technical operating points that must first be investigated before sustainable methanol synthesis can be implemented on an industrial scale. Such a dynamic is simply not provided for in processes used today,” says Florian Nestler, doctoral student at Fraunhofer ISE.

Dr. Andreas Geisbauer, power to liquid expert at the project partner Clariant confirms: "Producing methanol from CO₂ and 'green' hydrogen places high demands on catalysts performance. The new plant is an important milestone on the way to develop optimalized catalysts and processes for this demanding application.”

Simulations and Experiments from a Single Source

At Fraunhofer ISE, the new boundary conditions for methanol synthesis are being investigated experimentally and by means of simulations. The focus is on the catalytic processes in the synthesis reactor. A dynamic simulation platform has been developed for this purpose, which can calculate steady-state and dynamic heat transfer, the reaction behavior as well as temporal and spatial temperature curves.

In order to successfully apply the technology to an industrial plant with the least amount of effort and in a short period of time, a scale-down of an industrial synthesis reactor was constructed. This reactor is the heart of a miniplant which was designed and built by researchers at Fraunhofer ISE. A specially adapted cooling system enables the miniplant to operate with a thermal and reaction-kinetic behavior similar to that of a large-scale plant.

The miniplant shall help to validate and extend the modeling and simulation approaches found in the literature. For this purpose, an analytical system with high temporal and spatial resolution was integrated into the mini-plant.

This allows on the one hand, a dynamic measurement of the product concentration by means of Fourier Transform Infrared Spectroscopy (FT-IR) and, on the other hand, a spatially resolved temperature measurement inside the reactor by means of a novel fiber-optic measuring method. In combination, these measurement data provide real-time information in the range of seconds about the processes in the reactor and can be used to adapt the model parameters for both steady-state and dynamic simulations.

In the future, it will not only be possible to obtain information on reaction kinetics but also on the deactivation of the catalyst in long-term measurements. Operating points can be characterized very quickly, allowing even extensive parameter ranges to be processed quickly.

The knowledge gained in this way will be linked to the existing dynamic simulation platform of Fraunhofer ISE. This enables the investigation of load changes as they would occur in real industrial plants in the future. This in turn generates valuable data that helps to ensure that methanol can be obtained from sustainable raw materials and renewable electricity and can thus be used in various applications as an energy carrier, chemical, and fuel (additive).

Wissenschaftliche Ansprechpartner:

Max Hadrich, Head of Team Power-to-Liquids
max.julius.hadrich@ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE
Further information:
https://www.ise.fraunhofer.de/

Further reports about: CO2 ISE Methanol Solare Energiesysteme catalysts electricity industrial scale raw materials

More articles from Power and Electrical Engineering:

nachricht ETRI develops eco-friendly color thin-film solar cells
31.07.2020 | National Research Council of Science & Technology

nachricht Silicon Carbide Transistors Improve Efficiency in Home Storage Systems
24.07.2020 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>