Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers are the key to mastering challenges in lightweight construction

29.05.2015

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of light carbon composite materials. However, the possibilities of lightweight construction technologies are far from exhausted.


Truck seat in lightweight design, which is up to 20 kg lighter than conventional seats, partly thanks to the seat base made of glass-fiber-reinforced plastic, developed at Fraunhofer ILT

© Fraunhofer ILT, Aachen


Lightweight control arm with a hollow structure inside, made by SLM.

© Fraunhofer ILT, Aachen.

New manufacturing and processing methods are capable of making production processes even faster and of making materials even lighter and more robust. Laser technologies have a particularly important part to play here, as several exhibits from the Aachen-based Fraunhofer Institute for Laser Technology ILT will demonstrate during the LASER World of Photonics. A row of letters two meters high spelling out the word “light” is the most eye-catching exhibit.

The letters are made from a complex, porous mesh structure. Just as it made this special exhibit from plastic using 3D printing technology, Fraunhofer ILT works with industrial customers to develop and manufacture metallic components that are weight-optimized thanks to their internal structure. 3D printing makes it commercially viable to produce even customized and one-off components and tools. The LIGHT legend at the trade fair is a spectacular illustration of how lightweight stable structures can be.

Light and stable thanks to selective laser melting

Manufacturing metallic components with similarly lightweight structures is Fraunhofer ILT researchers’ specialty. To do it, they use the selective laser melting (SLM) method, which has been further developed over the past few years. Broadly similar to 3D printing, SLM involves using a laser beam to melt powder with pinpoint accuracy according to CAD data instructions.

This melt then hardens to form layers of just a few micrometers in thickness, building up a component layer by layer. The researchers also used SLM methods to develop a stable and very lightweight control arm support for a sports car, from which the wheels are individually suspended. This control arm, too, has a hollow structure inside, making it both lighter and more stable than cast or machined components. Hollow structures of that complexity would be impossible to produce without SLM methods.

Sticking materials together without adhesive

Making components and vehicles ever lighter is a challenge, because the weight savings must not come at the expense of stability. For this reason, today’s lightweight construction often combines different materials – such as aluminum and fiber-reinforced plastic (FRP) – each chosen for its suitability for a specific purpose. As the stability of FRP suffers when it is screwed together with other components, current practice is generally to glue the various materials together.

However, this means adding a third material to the equation – one that can also age and crack. Fraunhofer ILT scientists’ answer to these drawbacks when joining FRP and metal is to employ laser-based processing techniques. In this case, they use a laser to burn a 100-micrometer-scale pattern into the surface of the metal component with small depressions and undercuts.

“When joining metal and FRP this way, the plastic flows into the depressions while it is still hot and liquid,” explains ILT laser expert Dr. Alexander Olowinsky. “When the plastic hardens, it is anchored into the surface of the metal.” A plastic-reinforced car door that was manufactured using this method will be on display at the trade fair.

These days, people are increasingly combining not only FRP and metal with each other but also – depending on the application – various kinds of steel. In order to bring down vehicle weight, automakers are now making use of materials such as high-strength, press-hardened steels. These are particularly stable, meaning thinner sheets can be used, which reduces weight.

But they are also expensive, prompting automakers to weld conventional steels together with high-strength, press-hardened steels. The problem is that standard methods such as spot welding cause the strength of the high-strength steels to diminish at the joint.

To address this situation, Fraunhofer ILT worked with several industrial partners in a cooperative project to develop an alternative welding method that does not impair the crash stability of the high-strength steels. During the trade fair, the researchers will be presenting the different technologies by means of various exhibits such as the control arm support.

The researchers will also be presenting the exhibits at the Fraunhofer media tour on Tuesday, June 23, 2015. It starts at 11:00 a.m. at Booth 341 in Hall B3 and ends at approximately 12:00 midday at Booth 121 in Hall A3, followed by a discussion and light refreshments.

Contact

Dr.-Ing. Alexander Olowinsky
Head of the Micro Joining Group
Telephone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>