Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater robot swims free thanks to York U-designed wireless controller

01.10.2010
A waterproof controller designed and built by York University researchers is allowing an underwater robot to go “wireless” in a unique way.

AQUA, an amphibious, otter-like robot, is small and nimble, with flippers rather than propellers, designed for intricate data collection from shipwrecks and reefs.

The robot, a joint project of York, McGill and Dalhousie universities, can now be controlled wirelessly using a waterproof tablet built at York. While underwater, divers can program the tablet to display tags onscreen, similar to barcodes read by smartphones. The robot’s on-board camera then scans these two-dimensional tags to receive and carry out commands. For a video of AQUA in action, click here.

Cutting the cord on underwater robots has been a longstanding challenge for scientists; water interferes with radio signals, hindering traditional wireless communication via modem. Tethered communication is cumbersome and can create safety issues for divers.

“Having a robot tethered to a vehicle above water creates a scenario where communication between the diver, robot, and surface operator becomes quite complicated,” says Michael Jenkin, professor in York’s Faculty of Science & Engineering and co-author of the forthcoming paper, Swimming with Robots: Human Robot Communication at Depth.

“Investigating a shipwreck, for example, is a very delicate operation and the diver and robot need to be able to react quickly to changes in the environment. An error or a lag in communication could be dangerous,” Jenkin says.

Realizing there was no device on the market that fit the bill, Jenkin and his team at York’s Centre for Vision Research, including the paper’s lead author, MSc student Bart Verzijlenberg, set to work constructing a prototype. The resulting device, fittingly dubbed AQUATablet, is watertight to a depth of 60 feet. Aluminum housing with a clear acrylic cover protects the tablet computer, which can be controlled by a diver using toggle-switches and on-screen prompts.

“A diver at 60 feet can actually teleoperate AQUA 30-40 feet deeper. Needless to say this is much easier on the diver, physically, and much safer,” Jenkin says.

The tablet also allows divers to command the robot much as if they were using a video game joystick; turn the tablet right and AQUA turns right, too. In this mode, the robot is connected to the tablet by a slim length of optical cable, circumventing many of the issues of a robot-to-surface tether. The optical cable also allows AQUA to provide video feedback from its camera to the operator. In a totally wireless mode, the robot acknowledges prompts by flashing its on-board light. Its cameras can be used to build 3-D models of the environment which can then be used to guide the robot to particular tasks.

“This is a huge improvement on [a robot] having to travel to the surface to communicate with its operators,” Jenkin says.

In past, divers have used laminated flashcards to visually communicate with robots while underwater. However, these limit the diver to a pre-set sequence of commands.

“It’s impossible to anticipate everything you’re going to want the robot to do once you get underwater. We wanted to develop a system where we could create commands on the fly, in response to the environment,” he says.

Jenkin and Verzijlenberg’s paper will be presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) in Taiwan.

Jenkin and Verzijlenberg are two of the researchers based in York’s new state-of-the-art Sherman Health Science Research Centre, which officially opened on Sept. 14, 2010. Jenkin leads the Canadian Centre for Field Robotics, which is based on the building’s main level. The centre is supported by a grant from the Canada Foundation for Innovation (CFI). The AQUA project is funded in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). York’s Centre for Vision Research is part of the Faculty of Health.

York University is the leading interdisciplinary research and teaching university in Canada. York offers a modern, academic experience at the undergraduate and graduate level in Toronto, Canada’s most international city. The third largest university in the country, York is host to a dynamic academic community of 50,000 students and 7,000 faculty and staff, as well as 200,000 alumni worldwide. York’s 10 Faculties and 28 research centres conduct ambitious, groundbreaking research that is interdisciplinary, cutting across traditional academic boundaries. This distinctive and collaborative approach is preparing students for the future and bringing fresh insights and solutions to real-world challenges. York University is an autonomous, not-for-profit corporation.

Media Contact:
Melissa Hughes, Media Relations, York University, 416 736 2100 x22097, mehughes@yorku.ca

Melissa Hughes | EurekAlert!
Further information:
http://www.yorku.ca
http://news.yorku.ca/2010/09/30/underwater-robot-swims-free-thanks-to-york-u-designed-wireless-controller/

More articles from Power and Electrical Engineering:

nachricht Perovskite-silicon solar cell research collaboration hits 25.2% efficiency
15.06.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Second heat source optimises heat pump system
12.06.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>