Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researchers put a new spin on electrons

17.04.2009
Technique could provide an easier route to 'spintronic' circuits
Technique could provide an easier route to 'spintronic' circuits
In the first demonstration of its kind, researchers at the University of British Columbia have controlled the spin of electrons using a ballistic technique--bouncing electrons through a microscopic channel of precisely constructed, two-dimensional layer of semiconductor.

It's the first time the intrinsic properties of a semiconductor—not external electric or magnetic fields–have been used to achieve the effect. The findings, published this week in Nature, could have implications for the development of so called 'spintronic' circuits: systems that use the directional spin of electrons to store and process data.

"The need to use high-frequency external fields to control spin is one of the major stumbling blocks in using electrons for information processing, or in a spintronic circuit," notes Joshua Folk, principal investigator on the project and Canada Research Chair in the Physics of Nanostructures. "We show that the spin of electrons can be controlled without external fields, simply by designing the right circuit geometry and letting electrons move freely through it."

The new technique uses the natural interactions of the electrons within the semiconductor micro-channel to control their spin--a technique that is a major step, but not yet flexible enough for industrial applications, notes Folk, an Assistant Professor with Physics and Astronomy who came to UBC via the Massachusetts Institute of Technology.

Electronic systems that use the spin of an electron--a quantum mechanical property that comes in two varieties: up or down--would work similarly to today's transistors, but be smaller and use less energy.

Presently, electrical charge alone is responsible for the logic functions in circuits. Power consumption by these circuits is the primary roadblock to faster, more powerful processors. A spintronic circuit has the potential to use less power by storing and manipulating a bit of information as electron spin.

Spintronic circuits may also be a viable avenue for building quantum information processing devices. The exponentially faster processing possible with such a device could have applications ranging from code breaking, to dramatically improved drug design, to simulations of complex processes in molecular systems.

Next steps by Folk and his team—working with colleagues at the Universität Regensburg in Germany—will include using new devices to gain more precise control over the alignment and trajectory of the electrons.

Chris Balma | EurekAlert!
Further information:
http://www.ubc.ca
http://www.nature.com
http://www.physics.ubc.ca/~jfolk

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>