Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why solar cells lose potency

20.06.2005


Commercial products such as laptop computer monitors and solar-powered calculators are constructed from a light-sensitive material with a peculiar problem: When exposed to intense light, it forms defects, reducing the efficiency of the solar cells by 10 to 15 percent.

Scientists have been pondering this flaw since the 1970s, because the material – hydrogenated amorphous silicon, or a-Si:H – has important applications for solar energy generation. A new study reported in the June 13 issue of the journal Applied Physics Letters, however, suggests that Ohio University scientists may have found the root of the problem.

When this photovoltaic material is exposed to intense light, hydrogen atoms move into new arrangements in which some silicon atoms become bonded to two silicon and two hydrogen atoms, creating a structure called silicon dihydride, or SiH2, said David Drabold, Presidential Research Scholar and professor of physics and astronomy at Ohio University, who co-authored the paper with graduate student Tesfaye Abtew and P. C. Taylor, Distinguished Professor of Physics at the University of Utah.



It’s a process analogous to what happens when light hits photographic film, Drabold explained. Light prompts small clusters of silver atoms to accumulate at the surface and form an image. In the case of the photovoltaic material, however, light makes hydrogen atoms move, which creates undesirable defects.

Drabold and Abtew came to the conclusion after running quantum mechanical computer simulations of how the atoms in the material respond to light. The work is based jointly on the simulations and on experimental findings by Taylor and his group.

"This isn’t a fatal effect, but it does reduce performance. It would be nice if the problem could be ameliorated some," said Drabold, who is funded by the National Science Foundation.

The scientists currently are devising further models to explain how hydrogen motion and creation of SiH2 wreak havoc on the solar cells, and are beginning to understand its pathways, he added.

Though a-SiH isn’t the only photovoltaic material of interest to the solar power industry, figuring out to address the flaw could lead to improvements in this important class of solar cells, Drabold said.

"If you can figure out what is going on, at least you have some reasonable guidance for how to solve it, such as adding some impurity to block it," he said.

Though popularly used in consumer products such as flat-screen computer monitor displays and calculators, a-Si:H materials also have potential for large-scale energy production. They are almost as efficient as conventional electric generation, especially in sunny areas, and they don’t generate greenhouse gases, he noted.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Power and Electrical Engineering:

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

nachricht New nanofiber marks important step in next generation battery development
13.03.2017 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>