Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why solar cells lose potency

20.06.2005


Commercial products such as laptop computer monitors and solar-powered calculators are constructed from a light-sensitive material with a peculiar problem: When exposed to intense light, it forms defects, reducing the efficiency of the solar cells by 10 to 15 percent.

Scientists have been pondering this flaw since the 1970s, because the material – hydrogenated amorphous silicon, or a-Si:H – has important applications for solar energy generation. A new study reported in the June 13 issue of the journal Applied Physics Letters, however, suggests that Ohio University scientists may have found the root of the problem.

When this photovoltaic material is exposed to intense light, hydrogen atoms move into new arrangements in which some silicon atoms become bonded to two silicon and two hydrogen atoms, creating a structure called silicon dihydride, or SiH2, said David Drabold, Presidential Research Scholar and professor of physics and astronomy at Ohio University, who co-authored the paper with graduate student Tesfaye Abtew and P. C. Taylor, Distinguished Professor of Physics at the University of Utah.



It’s a process analogous to what happens when light hits photographic film, Drabold explained. Light prompts small clusters of silver atoms to accumulate at the surface and form an image. In the case of the photovoltaic material, however, light makes hydrogen atoms move, which creates undesirable defects.

Drabold and Abtew came to the conclusion after running quantum mechanical computer simulations of how the atoms in the material respond to light. The work is based jointly on the simulations and on experimental findings by Taylor and his group.

"This isn’t a fatal effect, but it does reduce performance. It would be nice if the problem could be ameliorated some," said Drabold, who is funded by the National Science Foundation.

The scientists currently are devising further models to explain how hydrogen motion and creation of SiH2 wreak havoc on the solar cells, and are beginning to understand its pathways, he added.

Though a-SiH isn’t the only photovoltaic material of interest to the solar power industry, figuring out to address the flaw could lead to improvements in this important class of solar cells, Drabold said.

"If you can figure out what is going on, at least you have some reasonable guidance for how to solve it, such as adding some impurity to block it," he said.

Though popularly used in consumer products such as flat-screen computer monitor displays and calculators, a-Si:H materials also have potential for large-scale energy production. They are almost as efficient as conventional electric generation, especially in sunny areas, and they don’t generate greenhouse gases, he noted.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>