Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia polymer electrolyte membrane brings goal of a high temperature PEM fuel cell closer

06.05.2004


A new type of polymer electrolyte membrane (PEM) is being developed by researchers at the Department of Energy’s Sandia National Laboratories to help bring the goal of a micro fuel cell closer to realization using diverse fuels like glucose, methanol, and hydrogen.


SANDIA RESEARCHERS Cy Fujimoto, left, and Chris Cornelius hold a test micro fuel cell with the Sandia membrane. Next to Fujimoto is a micro fuel test station. (Photo by Randy Montoya)



This Sandia Polymer Electrolyte Alternative (SPEA) could help fulfill the need for new, uninterrupted autonomous power sources for sensors, communications, microelectronics, healthcare applications, and transportation.

The membrane research is one part of a three-year internally funded Bio-Micro Fuel Cell Grand Challenge led by Chris Apblett, Sandia principal investigator, and Kent Schubert, Sandia project manager.


Recently the membrane research team headed by Sandia researcher Chris Cornelius demonstrated that the new SPEA could operate as high as 140 degrees C and produce a peak power of 1.1 watts per square centimeter at 2 amps per square centimeter at 80 degrees C. Under identical operating conditions, the SPEA material can deliver higher power outputs with methanol and hydrogen than Nafion. Nafion is recognized as the state-of-art PEM material for fuel cells.

Because the SPEA material can operate at elevated temperatures, it enables several key benefits that Nafion cannot provide. These advances include smaller fuel cell stacks because of better heat rejection, enhanced water management, and significant resistance to carbon monoxide poisoning. These performance properties suggest that the SPEA material may be a potential alternative to Nafion.

Cornelius notes that a higher temperature PEM material is one of the goals of the DOE’s Hydrogen, Fuel Cells, and Infrastructure Technologies Program. http://www.eere.energy.gov/hydrogenandfuelcells/. One milestone is to develop by 2005 polymer electrolyte membranes for automotive applications that operate at 120 degrees C for 2,000 hours with low membrane interfacial resistance.

Of the new SPEA material that Cornelius and Sandia researcher Cy Fujimoto developed, Cornelius says, "Validation of this material as a Nafion alternative would be a significant achievement, an accomplishment we strongly desire."

A polymer electrolyte membrane is a critical component of a working fuel cell. Its function is to conduct protons efficiently and possess low fuel crossover properties. It must also be robust enough to be assembled into a fuel cell stack and have long life.

In developing the SPEA material, the team looked at the success and limitations of other PEM alternatives in order to develop a set of characteristics for their model material.

"At the beginning of this project we were considering several polymer families for a PEM alternative, including a family of polyphenylenes," Cornelius says. "When the physical properties of one of the polyphenylenes being considered as a polymer electrolyte was improved and integrated into a working fuel cell, we happily discovered that it works extremely well compared to Nafion."

Cornelius says that the SPEA material he and Fujimoto are developing "may be an enabling material that could have an impact on the fuel cell community and help Sandia become recognized as a fuel cell research organization."

"We have already completed initial material validation studies of our SPEA with the help of our battery group and Los Alamos National Laboratory," he says.

The next steps, Cornelius says, are to reduce the internal resistance in the fuel cell membrane electrode assembly, optimize catalyst and ionomer composition, improve the properties of the SPEA material, conduct life cycle testing in a fuel cell environment, and assess the potential value for large-scale commercialization of the polymer electrolyte.

Understanding the material’s capabilities and limitations are necessary steps in order to potentially improve the physical properties of SPEA material.

"We see this SPEA material as having the potential of being integrated into fuel cells ranging from microwatts to kilowatts," he says. "Such a broad power range means that this Sandia Polymer Electrolyte Alternative could be used in a fuel cell to power everything from sensors, cell phones, laptops, and automobiles."


Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia media contact: Chris Burroughs, coburro@sandia.gov, 505-844-0948.
Sandia technical contact: Chris Cornelius, cjcorne@sandia.gov, 505-844-6192.

Sandia National Laboratories’ World Wide Web home page is located at http://www.sandia.gov. Sandia news releases, news tips, science photo gallery, and periodicals can be found at the News Center button.

Chris Burroughs | Sandia
Further information:
http://www.sandia.gov/news-center/news-releases/2004/renew-energy-batt/microfuel.html

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>