Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia polymer electrolyte membrane brings goal of a high temperature PEM fuel cell closer

06.05.2004


A new type of polymer electrolyte membrane (PEM) is being developed by researchers at the Department of Energy’s Sandia National Laboratories to help bring the goal of a micro fuel cell closer to realization using diverse fuels like glucose, methanol, and hydrogen.


SANDIA RESEARCHERS Cy Fujimoto, left, and Chris Cornelius hold a test micro fuel cell with the Sandia membrane. Next to Fujimoto is a micro fuel test station. (Photo by Randy Montoya)



This Sandia Polymer Electrolyte Alternative (SPEA) could help fulfill the need for new, uninterrupted autonomous power sources for sensors, communications, microelectronics, healthcare applications, and transportation.

The membrane research is one part of a three-year internally funded Bio-Micro Fuel Cell Grand Challenge led by Chris Apblett, Sandia principal investigator, and Kent Schubert, Sandia project manager.


Recently the membrane research team headed by Sandia researcher Chris Cornelius demonstrated that the new SPEA could operate as high as 140 degrees C and produce a peak power of 1.1 watts per square centimeter at 2 amps per square centimeter at 80 degrees C. Under identical operating conditions, the SPEA material can deliver higher power outputs with methanol and hydrogen than Nafion. Nafion is recognized as the state-of-art PEM material for fuel cells.

Because the SPEA material can operate at elevated temperatures, it enables several key benefits that Nafion cannot provide. These advances include smaller fuel cell stacks because of better heat rejection, enhanced water management, and significant resistance to carbon monoxide poisoning. These performance properties suggest that the SPEA material may be a potential alternative to Nafion.

Cornelius notes that a higher temperature PEM material is one of the goals of the DOE’s Hydrogen, Fuel Cells, and Infrastructure Technologies Program. http://www.eere.energy.gov/hydrogenandfuelcells/. One milestone is to develop by 2005 polymer electrolyte membranes for automotive applications that operate at 120 degrees C for 2,000 hours with low membrane interfacial resistance.

Of the new SPEA material that Cornelius and Sandia researcher Cy Fujimoto developed, Cornelius says, "Validation of this material as a Nafion alternative would be a significant achievement, an accomplishment we strongly desire."

A polymer electrolyte membrane is a critical component of a working fuel cell. Its function is to conduct protons efficiently and possess low fuel crossover properties. It must also be robust enough to be assembled into a fuel cell stack and have long life.

In developing the SPEA material, the team looked at the success and limitations of other PEM alternatives in order to develop a set of characteristics for their model material.

"At the beginning of this project we were considering several polymer families for a PEM alternative, including a family of polyphenylenes," Cornelius says. "When the physical properties of one of the polyphenylenes being considered as a polymer electrolyte was improved and integrated into a working fuel cell, we happily discovered that it works extremely well compared to Nafion."

Cornelius says that the SPEA material he and Fujimoto are developing "may be an enabling material that could have an impact on the fuel cell community and help Sandia become recognized as a fuel cell research organization."

"We have already completed initial material validation studies of our SPEA with the help of our battery group and Los Alamos National Laboratory," he says.

The next steps, Cornelius says, are to reduce the internal resistance in the fuel cell membrane electrode assembly, optimize catalyst and ionomer composition, improve the properties of the SPEA material, conduct life cycle testing in a fuel cell environment, and assess the potential value for large-scale commercialization of the polymer electrolyte.

Understanding the material’s capabilities and limitations are necessary steps in order to potentially improve the physical properties of SPEA material.

"We see this SPEA material as having the potential of being integrated into fuel cells ranging from microwatts to kilowatts," he says. "Such a broad power range means that this Sandia Polymer Electrolyte Alternative could be used in a fuel cell to power everything from sensors, cell phones, laptops, and automobiles."


Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia media contact: Chris Burroughs, coburro@sandia.gov, 505-844-0948.
Sandia technical contact: Chris Cornelius, cjcorne@sandia.gov, 505-844-6192.

Sandia National Laboratories’ World Wide Web home page is located at http://www.sandia.gov. Sandia news releases, news tips, science photo gallery, and periodicals can be found at the News Center button.

Chris Burroughs | Sandia
Further information:
http://www.sandia.gov/news-center/news-releases/2004/renew-energy-batt/microfuel.html

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>