Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL on fast track for hydrogen fuel reformer

28.04.2004


Researchers at the Department of Energy’s Pacific Northwest National Laboratory are developing a system to rapidly produce hydrogen from gasoline in your car. "This brings fuel cell-powered cars one step closer to the mass market," said Larry Pederson, project leader at PNNL. Researchers will present their developments at the American Institute for Chemical Engineers spring meeting in New Orleans, on April 27th, 2004.



Fuel cells use hydrogen to produce electricity which runs the vehicle. Fuel cell-powered vehicles get about twice the fuel efficiency of today’s cars and significantly reduce emissions. But how do you "gas up" a hydrogen car? Instead of building a new infrastructure of hydrogen fueling stations you can convert or reform gasoline onboard the vehicle. One approach uses steam reforming, in which hydrocarbon fuel reacts with steam at high temperatures over a catalyst. Hydrogen atoms are stripped from water and hydrocarbon molecules to produce hydrogen gas.

The problem has been that you have to wait about 15 minutes before you can drive. It has taken steam reformer prototypes that long to come up to temperature to begin producing hydrogen to power the vehicle. This delay is unacceptable to drivers.


However, PNNL has demonstrated a very compact steam reformer which can produce large amounts of hydrogen-rich gas from a liquid fuel in only 12 seconds. "This kind of fast start was thought to be impossible until just a couple of years ago," said Pederson.

The Department of Energy recognized that a fast start was vital to the viability of onboard fuel processing and established an ultimate goal of 30 seconds for cold start time with an intermediate target of 60 seconds by 2004. The steam reformer is the highest temperature component within the fuel processor and represents the biggest hurdle to achieving rapid startup. "Hence, the PNNL achievement of a 12 second steam reformer startup is a big step towards a complete fuel processor which can start up in 30 seconds," said Greg Whyatt, the project’s lead engineer.

PNNL engineers called upon their expertise in microtechnology to develop the reforming reactor. Microchannels, narrower than a paper clip, provide high rates of heat and mass transport within the reactor. This allows significantly faster reactions and dramatically reduces the size of the reactor. A complete microchannel fuel processor for a 50 kilowatt fuel cell is expected to be less than one cubic foot. At this size, the system will readily fit into an automobile.

"The key feature of the new design is that the reforming reactor and water vaporizer are configured as thin panels with the hot gases flowing through the large surface area of the panel," said Whyatt. This allows high gas flows to be provided with an inexpensive, low-power fan while still providing efficient heat transfer to rapidly heat the steam reformer.

"In addition, the panel configuration allows higher combustion temperatures and flows without risking damage to the metal structure while a low pressure drop reduces the electrical power consumed by the fan during startup and steady operation" said Whyatt.

PNNL researchers are now working to reduce the fuel consumption and air flow required during startup. In addition, integration with other components is needed to demonstrate a complete fuel processor system that can achieve startup in less than 30 seconds. However, PNNL’s fuel reformer technology appears to have overcome a major stumbling block for onboard reformation: the need for speed.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965. (www.pnl.gov).

Susan Bauer | PNNL
Further information:
http://www.pnl.gov/news/2004/04-31.htm

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>