Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL on fast track for hydrogen fuel reformer

28.04.2004


Researchers at the Department of Energy’s Pacific Northwest National Laboratory are developing a system to rapidly produce hydrogen from gasoline in your car. "This brings fuel cell-powered cars one step closer to the mass market," said Larry Pederson, project leader at PNNL. Researchers will present their developments at the American Institute for Chemical Engineers spring meeting in New Orleans, on April 27th, 2004.



Fuel cells use hydrogen to produce electricity which runs the vehicle. Fuel cell-powered vehicles get about twice the fuel efficiency of today’s cars and significantly reduce emissions. But how do you "gas up" a hydrogen car? Instead of building a new infrastructure of hydrogen fueling stations you can convert or reform gasoline onboard the vehicle. One approach uses steam reforming, in which hydrocarbon fuel reacts with steam at high temperatures over a catalyst. Hydrogen atoms are stripped from water and hydrocarbon molecules to produce hydrogen gas.

The problem has been that you have to wait about 15 minutes before you can drive. It has taken steam reformer prototypes that long to come up to temperature to begin producing hydrogen to power the vehicle. This delay is unacceptable to drivers.


However, PNNL has demonstrated a very compact steam reformer which can produce large amounts of hydrogen-rich gas from a liquid fuel in only 12 seconds. "This kind of fast start was thought to be impossible until just a couple of years ago," said Pederson.

The Department of Energy recognized that a fast start was vital to the viability of onboard fuel processing and established an ultimate goal of 30 seconds for cold start time with an intermediate target of 60 seconds by 2004. The steam reformer is the highest temperature component within the fuel processor and represents the biggest hurdle to achieving rapid startup. "Hence, the PNNL achievement of a 12 second steam reformer startup is a big step towards a complete fuel processor which can start up in 30 seconds," said Greg Whyatt, the project’s lead engineer.

PNNL engineers called upon their expertise in microtechnology to develop the reforming reactor. Microchannels, narrower than a paper clip, provide high rates of heat and mass transport within the reactor. This allows significantly faster reactions and dramatically reduces the size of the reactor. A complete microchannel fuel processor for a 50 kilowatt fuel cell is expected to be less than one cubic foot. At this size, the system will readily fit into an automobile.

"The key feature of the new design is that the reforming reactor and water vaporizer are configured as thin panels with the hot gases flowing through the large surface area of the panel," said Whyatt. This allows high gas flows to be provided with an inexpensive, low-power fan while still providing efficient heat transfer to rapidly heat the steam reformer.

"In addition, the panel configuration allows higher combustion temperatures and flows without risking damage to the metal structure while a low pressure drop reduces the electrical power consumed by the fan during startup and steady operation" said Whyatt.

PNNL researchers are now working to reduce the fuel consumption and air flow required during startup. In addition, integration with other components is needed to demonstrate a complete fuel processor system that can achieve startup in less than 30 seconds. However, PNNL’s fuel reformer technology appears to have overcome a major stumbling block for onboard reformation: the need for speed.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965. (www.pnl.gov).

Susan Bauer | PNNL
Further information:
http://www.pnl.gov/news/2004/04-31.htm

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>