Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL on fast track for hydrogen fuel reformer

28.04.2004


Researchers at the Department of Energy’s Pacific Northwest National Laboratory are developing a system to rapidly produce hydrogen from gasoline in your car. "This brings fuel cell-powered cars one step closer to the mass market," said Larry Pederson, project leader at PNNL. Researchers will present their developments at the American Institute for Chemical Engineers spring meeting in New Orleans, on April 27th, 2004.



Fuel cells use hydrogen to produce electricity which runs the vehicle. Fuel cell-powered vehicles get about twice the fuel efficiency of today’s cars and significantly reduce emissions. But how do you "gas up" a hydrogen car? Instead of building a new infrastructure of hydrogen fueling stations you can convert or reform gasoline onboard the vehicle. One approach uses steam reforming, in which hydrocarbon fuel reacts with steam at high temperatures over a catalyst. Hydrogen atoms are stripped from water and hydrocarbon molecules to produce hydrogen gas.

The problem has been that you have to wait about 15 minutes before you can drive. It has taken steam reformer prototypes that long to come up to temperature to begin producing hydrogen to power the vehicle. This delay is unacceptable to drivers.


However, PNNL has demonstrated a very compact steam reformer which can produce large amounts of hydrogen-rich gas from a liquid fuel in only 12 seconds. "This kind of fast start was thought to be impossible until just a couple of years ago," said Pederson.

The Department of Energy recognized that a fast start was vital to the viability of onboard fuel processing and established an ultimate goal of 30 seconds for cold start time with an intermediate target of 60 seconds by 2004. The steam reformer is the highest temperature component within the fuel processor and represents the biggest hurdle to achieving rapid startup. "Hence, the PNNL achievement of a 12 second steam reformer startup is a big step towards a complete fuel processor which can start up in 30 seconds," said Greg Whyatt, the project’s lead engineer.

PNNL engineers called upon their expertise in microtechnology to develop the reforming reactor. Microchannels, narrower than a paper clip, provide high rates of heat and mass transport within the reactor. This allows significantly faster reactions and dramatically reduces the size of the reactor. A complete microchannel fuel processor for a 50 kilowatt fuel cell is expected to be less than one cubic foot. At this size, the system will readily fit into an automobile.

"The key feature of the new design is that the reforming reactor and water vaporizer are configured as thin panels with the hot gases flowing through the large surface area of the panel," said Whyatt. This allows high gas flows to be provided with an inexpensive, low-power fan while still providing efficient heat transfer to rapidly heat the steam reformer.

"In addition, the panel configuration allows higher combustion temperatures and flows without risking damage to the metal structure while a low pressure drop reduces the electrical power consumed by the fan during startup and steady operation" said Whyatt.

PNNL researchers are now working to reduce the fuel consumption and air flow required during startup. In addition, integration with other components is needed to demonstrate a complete fuel processor system that can achieve startup in less than 30 seconds. However, PNNL’s fuel reformer technology appears to have overcome a major stumbling block for onboard reformation: the need for speed.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965. (www.pnl.gov).

Susan Bauer | PNNL
Further information:
http://www.pnl.gov/news/2004/04-31.htm

More articles from Power and Electrical Engineering:

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>