Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL partners with industry to develop compact biosensor for wide-ranging applications

05.02.2009
Scientists at the Naval Research Laboratory (NRL) are partnering with industry to develop a sensor system for biomolecules that could make a significant contribution to a variety of fields such as healthcare, veterinary diagnostics, food safety, environmental testing, and national security.

NRL has developed a highly sensitive, portable biosensor system called the compact Bead Array Sensor System (cBASS®). This innovative instrument utilizes a special integrated sensor chip, called the Bead ARray Counter (BARC®), which contains an embedded array of giant magnetoresistive sensors.

With 64, 200 µm diameter sensors on the chip, BARC® has the potential to detect 64 different target analytes. Through the efforts of Dr. Lloyd Whitman, former head of the Surface Nanoscience and Sensor Technology Section at NRL, the NRL-developed technology has been licensed to Seahawk Biosystems Corporation in Rockville, Maryland, for further development in veterinary diagnostic, clinical diagnostic, and environmental applications.

Researchers at NRL began working on the magnetoelectronic biosensor concept more than a decade ago, under the leadership of Dr. Richard Colton and former NRL researcher Dr. David Baselt. Dr. Baselt used a quantum-mechanical effect called giant magnetoresistance (GMR). In simplistic terms, GMR materials are magnetic field-dependent resistors, i.e. their resistance changes when subjected to an externally applied magnetic field. GMR devices are typically constructed of alternating magnetic and non-magnetic metal thin-film multilayers that are only nanometers in thickness. Dr. Baselt looked specifically at a type of GMR called multilayer GMR in which the resistance of two thin antiferromagnetically exchange-coupled layers, separated by a thin non-magnetic conducting layer, can be altered by changing the moments of the ferromagnetic layers from anti-parallel to parallel.

This change decreases the spin-dependent interfacial scattering of charge carriers resulting in a decrease in the resistance of the GMR material. Dr. Baselt realized this very sensitive phenomenon could have potential in the development of sensors for biological materials which are naturally biochemically specific, but are not usually magnetic. By attaching tiny paramagnetic particles to biomolecules, such as proteins or single-stranded DNA, scientists could then perform standard sandwich-type immuno or nucleic acid hybridization assays over the GMR sensors. The GMR sensors, each covered with complementary protein or single-stranded DNA (the "probe"), could then detect the magnetically labeled biomolecules (the "target") the assays were designed to identify.

A decade in the making, the instrumentation that reads the BARC® chip is called the "compact Bead Array Sensor System" (cBASS®). NRL's current engineering team is led by Dr. Cy Tamanaha, working with Dr. Jack Rife, Mr. Matthew Kniller, and Mr. Michael Malito. The engineering team has worked to make many improvements to cBASS®, including:

- a new quick assembly assay cartridge with an integrated microfluidic cell, PCMCIA interface and kinematic microfluidics bus;
- an onboard fully automated fluidic valve and pumping system;
- a new electromagnet design with lower power requirements;
- a faster data exchange via USB with the controlling computer; and
- a rechargeable battery unit for enhanced portability (they have shrunk cBASS® down to approximately the size of a shoebox).

Ultimately, the success of the NRL's magnetoelectronic biosensor depends on the performance of the microbead label assays whose continued development is currently spearheaded by Dr. Shawn Mulvaney with the assistance of Ms. Kristina Myers. Over the past several years, NRL has made significant strides in surface biofunctionalization and assay development. With these advances, they have achieved high sensitivity and speed; low, non-specific binding with femtomolar DNA and attomolar protein detection, typically in less than 10 minutes. One important characteristic of the NRL-developed assays is that the size of the microbead labels allows for either magnetoelectronic detection with GMR sensors, or optical enumeration with image processing software via a standard low-power microscope. The detection sensitivity under each method is nearly identical. However, there are differences in the two methods related to the size of the detection system and the cost of the consumables used.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>