Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NRL partners with industry to develop compact biosensor for wide-ranging applications

Scientists at the Naval Research Laboratory (NRL) are partnering with industry to develop a sensor system for biomolecules that could make a significant contribution to a variety of fields such as healthcare, veterinary diagnostics, food safety, environmental testing, and national security.

NRL has developed a highly sensitive, portable biosensor system called the compact Bead Array Sensor System (cBASS®). This innovative instrument utilizes a special integrated sensor chip, called the Bead ARray Counter (BARC®), which contains an embedded array of giant magnetoresistive sensors.

With 64, 200 µm diameter sensors on the chip, BARC® has the potential to detect 64 different target analytes. Through the efforts of Dr. Lloyd Whitman, former head of the Surface Nanoscience and Sensor Technology Section at NRL, the NRL-developed technology has been licensed to Seahawk Biosystems Corporation in Rockville, Maryland, for further development in veterinary diagnostic, clinical diagnostic, and environmental applications.

Researchers at NRL began working on the magnetoelectronic biosensor concept more than a decade ago, under the leadership of Dr. Richard Colton and former NRL researcher Dr. David Baselt. Dr. Baselt used a quantum-mechanical effect called giant magnetoresistance (GMR). In simplistic terms, GMR materials are magnetic field-dependent resistors, i.e. their resistance changes when subjected to an externally applied magnetic field. GMR devices are typically constructed of alternating magnetic and non-magnetic metal thin-film multilayers that are only nanometers in thickness. Dr. Baselt looked specifically at a type of GMR called multilayer GMR in which the resistance of two thin antiferromagnetically exchange-coupled layers, separated by a thin non-magnetic conducting layer, can be altered by changing the moments of the ferromagnetic layers from anti-parallel to parallel.

This change decreases the spin-dependent interfacial scattering of charge carriers resulting in a decrease in the resistance of the GMR material. Dr. Baselt realized this very sensitive phenomenon could have potential in the development of sensors for biological materials which are naturally biochemically specific, but are not usually magnetic. By attaching tiny paramagnetic particles to biomolecules, such as proteins or single-stranded DNA, scientists could then perform standard sandwich-type immuno or nucleic acid hybridization assays over the GMR sensors. The GMR sensors, each covered with complementary protein or single-stranded DNA (the "probe"), could then detect the magnetically labeled biomolecules (the "target") the assays were designed to identify.

A decade in the making, the instrumentation that reads the BARC® chip is called the "compact Bead Array Sensor System" (cBASS®). NRL's current engineering team is led by Dr. Cy Tamanaha, working with Dr. Jack Rife, Mr. Matthew Kniller, and Mr. Michael Malito. The engineering team has worked to make many improvements to cBASS®, including:

- a new quick assembly assay cartridge with an integrated microfluidic cell, PCMCIA interface and kinematic microfluidics bus;
- an onboard fully automated fluidic valve and pumping system;
- a new electromagnet design with lower power requirements;
- a faster data exchange via USB with the controlling computer; and
- a rechargeable battery unit for enhanced portability (they have shrunk cBASS® down to approximately the size of a shoebox).

Ultimately, the success of the NRL's magnetoelectronic biosensor depends on the performance of the microbead label assays whose continued development is currently spearheaded by Dr. Shawn Mulvaney with the assistance of Ms. Kristina Myers. Over the past several years, NRL has made significant strides in surface biofunctionalization and assay development. With these advances, they have achieved high sensitivity and speed; low, non-specific binding with femtomolar DNA and attomolar protein detection, typically in less than 10 minutes. One important characteristic of the NRL-developed assays is that the size of the microbead labels allows for either magnetoelectronic detection with GMR sensors, or optical enumeration with image processing software via a standard low-power microscope. The detection sensitivity under each method is nearly identical. However, there are differences in the two methods related to the size of the detection system and the cost of the consumables used.

Donna McKinney | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>