Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL partners with industry to develop compact biosensor for wide-ranging applications

05.02.2009
Scientists at the Naval Research Laboratory (NRL) are partnering with industry to develop a sensor system for biomolecules that could make a significant contribution to a variety of fields such as healthcare, veterinary diagnostics, food safety, environmental testing, and national security.

NRL has developed a highly sensitive, portable biosensor system called the compact Bead Array Sensor System (cBASS®). This innovative instrument utilizes a special integrated sensor chip, called the Bead ARray Counter (BARC®), which contains an embedded array of giant magnetoresistive sensors.

With 64, 200 µm diameter sensors on the chip, BARC® has the potential to detect 64 different target analytes. Through the efforts of Dr. Lloyd Whitman, former head of the Surface Nanoscience and Sensor Technology Section at NRL, the NRL-developed technology has been licensed to Seahawk Biosystems Corporation in Rockville, Maryland, for further development in veterinary diagnostic, clinical diagnostic, and environmental applications.

Researchers at NRL began working on the magnetoelectronic biosensor concept more than a decade ago, under the leadership of Dr. Richard Colton and former NRL researcher Dr. David Baselt. Dr. Baselt used a quantum-mechanical effect called giant magnetoresistance (GMR). In simplistic terms, GMR materials are magnetic field-dependent resistors, i.e. their resistance changes when subjected to an externally applied magnetic field. GMR devices are typically constructed of alternating magnetic and non-magnetic metal thin-film multilayers that are only nanometers in thickness. Dr. Baselt looked specifically at a type of GMR called multilayer GMR in which the resistance of two thin antiferromagnetically exchange-coupled layers, separated by a thin non-magnetic conducting layer, can be altered by changing the moments of the ferromagnetic layers from anti-parallel to parallel.

This change decreases the spin-dependent interfacial scattering of charge carriers resulting in a decrease in the resistance of the GMR material. Dr. Baselt realized this very sensitive phenomenon could have potential in the development of sensors for biological materials which are naturally biochemically specific, but are not usually magnetic. By attaching tiny paramagnetic particles to biomolecules, such as proteins or single-stranded DNA, scientists could then perform standard sandwich-type immuno or nucleic acid hybridization assays over the GMR sensors. The GMR sensors, each covered with complementary protein or single-stranded DNA (the "probe"), could then detect the magnetically labeled biomolecules (the "target") the assays were designed to identify.

A decade in the making, the instrumentation that reads the BARC® chip is called the "compact Bead Array Sensor System" (cBASS®). NRL's current engineering team is led by Dr. Cy Tamanaha, working with Dr. Jack Rife, Mr. Matthew Kniller, and Mr. Michael Malito. The engineering team has worked to make many improvements to cBASS®, including:

- a new quick assembly assay cartridge with an integrated microfluidic cell, PCMCIA interface and kinematic microfluidics bus;
- an onboard fully automated fluidic valve and pumping system;
- a new electromagnet design with lower power requirements;
- a faster data exchange via USB with the controlling computer; and
- a rechargeable battery unit for enhanced portability (they have shrunk cBASS® down to approximately the size of a shoebox).

Ultimately, the success of the NRL's magnetoelectronic biosensor depends on the performance of the microbead label assays whose continued development is currently spearheaded by Dr. Shawn Mulvaney with the assistance of Ms. Kristina Myers. Over the past several years, NRL has made significant strides in surface biofunctionalization and assay development. With these advances, they have achieved high sensitivity and speed; low, non-specific binding with femtomolar DNA and attomolar protein detection, typically in less than 10 minutes. One important characteristic of the NRL-developed assays is that the size of the microbead labels allows for either magnetoelectronic detection with GMR sensors, or optical enumeration with image processing software via a standard low-power microscope. The detection sensitivity under each method is nearly identical. However, there are differences in the two methods related to the size of the detection system and the cost of the consumables used.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>