Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST method reveals all you need to know about 'waveforms'

08.10.2009
The National Institute of Standards and Technology (NIST) has unveiled a method for calibrating entire waveforms—graphical shapes showing how electrical signals vary over time—rather than just parts of waveforms as is current practice.

The new method improves accuracy in calibrations of oscilloscopes, common test instruments that measure voltage in communications and electronics devices, and potentially could boost performance and save money in other fields ranging from medical testing to structural analysis to remote sensing.

A waveform can take many different shapes, from staircase steps to irregular curves. A waveform typically is described by a single number—some key parameter of interest in a particular application. For example, engineers have described waveforms using terms such as pulse duration, or transition time between the levels representing '0' and '1' (the binary code used in digital electronics). But waveforms can be diverse and complex, especially in advanced high-speed devices, and a traditional analysis may not distinguish between similar shapes that differ in subtle ways. The result can be signal mistakes (a 1 mistaken for a 0, for instance) or misidentification of defects.

NIST's new calibration method* defines waveforms completely, providing both signal reading and measurement uncertainty at regular intervals along the entire wave, and for the first time makes waveform calibrations traceable to fundamental physics. The mathematics-intensive method is laborious and currently is performed only at NIST (which has more than 750 oscilloscopes), but the developers plan to write a software program that will automate the technique and make it transferable to other users.

The new method offers NIST calibration customers, including major manufacturers and the military, more comprehensive characterization of a greater variety of waveforms, and helps to meet current and future demands for measurements at ever-higher frequencies, data rates, and bandwidths. The impact could be far reaching. The global market for oscilloscopes is $1.2 billion. Anecdotal data suggest that for one product alone, Ethernet optical fiber transceivers, industry could save tens or even hundreds of millions of dollars through manufacturing innovations (such as the new NIST method) that reduce component reject rates and/or boost yields.

Of particular interest to scientists and engineers, the NIST calibration method incorporates new techniques for quantifying errors in waveform measurements. This allows, for the first time, accurate transfer of measurement uncertainties between the time domain (results arranged by time) and the frequency domain (the same data arranged by frequency). Researchers in many fields have long used a technique called "Fourier transform," which reveals patterns in a sequence of numbers, to transfer data from the time domain to the frequency domain. "The new NIST method is, in effect, a Fourier transform for uncertainty," says NIST physicist Paul Hale.

Although the new method was developed for common lab test instruments, it also may have applications in measuring other types of waveforms, such as those generated in electrocardiograms for medical testing, ultrasound diagnostics of structural defects and failures, speech recognition, seismology and other remote sensing activities.

* P. Hale, A. Dienstfrey, J.C.M. Wang, D.F. Williams, A. Lewandowski, D.A. Keenan and T.S. Clement. Traceable waveform calibration with a covariance-based uncertainty analysis. IEEE Transactions on Instrumentation and Measurement. Vol. 58, No. 10. Oct.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>