Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST method reveals all you need to know about 'waveforms'

08.10.2009
The National Institute of Standards and Technology (NIST) has unveiled a method for calibrating entire waveforms—graphical shapes showing how electrical signals vary over time—rather than just parts of waveforms as is current practice.

The new method improves accuracy in calibrations of oscilloscopes, common test instruments that measure voltage in communications and electronics devices, and potentially could boost performance and save money in other fields ranging from medical testing to structural analysis to remote sensing.

A waveform can take many different shapes, from staircase steps to irregular curves. A waveform typically is described by a single number—some key parameter of interest in a particular application. For example, engineers have described waveforms using terms such as pulse duration, or transition time between the levels representing '0' and '1' (the binary code used in digital electronics). But waveforms can be diverse and complex, especially in advanced high-speed devices, and a traditional analysis may not distinguish between similar shapes that differ in subtle ways. The result can be signal mistakes (a 1 mistaken for a 0, for instance) or misidentification of defects.

NIST's new calibration method* defines waveforms completely, providing both signal reading and measurement uncertainty at regular intervals along the entire wave, and for the first time makes waveform calibrations traceable to fundamental physics. The mathematics-intensive method is laborious and currently is performed only at NIST (which has more than 750 oscilloscopes), but the developers plan to write a software program that will automate the technique and make it transferable to other users.

The new method offers NIST calibration customers, including major manufacturers and the military, more comprehensive characterization of a greater variety of waveforms, and helps to meet current and future demands for measurements at ever-higher frequencies, data rates, and bandwidths. The impact could be far reaching. The global market for oscilloscopes is $1.2 billion. Anecdotal data suggest that for one product alone, Ethernet optical fiber transceivers, industry could save tens or even hundreds of millions of dollars through manufacturing innovations (such as the new NIST method) that reduce component reject rates and/or boost yields.

Of particular interest to scientists and engineers, the NIST calibration method incorporates new techniques for quantifying errors in waveform measurements. This allows, for the first time, accurate transfer of measurement uncertainties between the time domain (results arranged by time) and the frequency domain (the same data arranged by frequency). Researchers in many fields have long used a technique called "Fourier transform," which reveals patterns in a sequence of numbers, to transfer data from the time domain to the frequency domain. "The new NIST method is, in effect, a Fourier transform for uncertainty," says NIST physicist Paul Hale.

Although the new method was developed for common lab test instruments, it also may have applications in measuring other types of waveforms, such as those generated in electrocardiograms for medical testing, ultrasound diagnostics of structural defects and failures, speech recognition, seismology and other remote sensing activities.

* P. Hale, A. Dienstfrey, J.C.M. Wang, D.F. Williams, A. Lewandowski, D.A. Keenan and T.S. Clement. Traceable waveform calibration with a covariance-based uncertainty analysis. IEEE Transactions on Instrumentation and Measurement. Vol. 58, No. 10. Oct.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>