Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, Versatile Infrared Oven Ensures brilliant Surface Finish For Kitchen Fronts

10.06.2016


Gas catalytic infrared oven are custom-built for powder coating of medium density fibre board.

There is a wide range of surface finish requirements for cooker fronts in terms of design and surface properties. As well as the variety of colours and shapes other properties such as scratch-resistance, chemical resistance and water resistance also play an important part.


New flexible gascatalytic IR oven for kitchen front panels

Copyright Kempa nv Belgien 2016

Modern powder coatings are of great assistance here. The powder coating must not only run easily but also cure easily.

A versatile, tailor-made gas catalytic infra-red oven from Heraeus ensures a brilliant surface finish, especially for medium density fibre boards (MDF) Cooker fronts made of MDF board are enhanced by a coating. This can be a liquid or powder system, which allow both a seamless coating, with exceptional mechanical and chemical properties.

Kempa Fits the New Heraeus Infrared Oven

The Belgian company Kempa Products supplies kitchen fronts exactly to customer specifications in batches from one upwards. Consequently, in order to meet the powder coating requirements, the drying and curing oven must be flexible enough to meet all situations.

Kempa has used a gas catalytic oven from Heraeus for this essential, flexible heating process since the beginning of the year.

Paul Maeyninckx, managing director of Kempa Products, is delighted and comments, “In partnership with Heraeus, we could determine the plant design and set up the plant so that we can now react flexibly to every customer specification. As a result, we can achieve a very good finish much faster than before”.

Infrared Heating for Powder Coating

Heraeus has supplied Kempa gas catalytic infrared heating systems for two different places – for the pre-heating and for the curing itself. Powder coating on MDF boards is significantly more homogenous if the boards are pre-heated before the actual powder coating. This increases electrical conductivity, which then helps the powder to be distributed more homogenously.

The second gas catalytic infrared oven at Kempa serve to gel and cure the powder coating. Generally, powder absorbs infrared radiation very well, so that the powder itself heats up very quickly and is gelled in significantly shorter time than in a conventional convection oven. As there is no circulation of air, dust inclusion in the coating is eliminated and the powder is not swirled or moved around. A fast melt improves the coating quality and increases the production line speed.

Infrared heat is transferred faster and at higher power than warm air, so that in most cases the oven is shorter than a warm air oven or the production line speed is faster.

The oven at Kempa is 12m long, with a line speed of around two metres per minute. The implemented zone control allows adjustment of every temperature profile according to the requirements of MDF board dimensions or powder type used. Heraeus application specialists worked with Kempa in a series of tests to establish the required oven settings.

Various temperature profiles were investigated to meet the various board sizes and thicknesses and the various coating systems and to establish the fine adjustment of the control required. Finally, various programs to meet the different requirements were incorporated in the control system and these can be called up on demand.

Heraeus, the technology group headquartered in Hanau, Germany, is a leading international family-owned company formed in 1851. With expertise, a focus on innovations, operational excellence and an entrepreneurial leadership, we strive to continuously improve our business performance. We create high-quality solutions for our clients and strengthen their competitiveness in the long term by combining material expertise with technological know-how.

Our ideas are focused on themes such as the environment, energy, health, mobility and industrial applications. Our portfolio ranges from components to coordinated material systems which are used in a wide variety of industries, including the steel, electronics, chemical, automotive and telecommunications industries. In the 2015 financial year, Heraeus generated revenues without precious metals of €1.9 bn and a total revenue including precious metal of €12.9 bn . With approximately 12,500 employees worldwide in more than 100 subsidiaries in 38 countries, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialty light sources and systems. In 2015, Heraeus Noblelight had an annual turnover of 158.3 Million € and employed 828 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters, systems and solutions for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information, please contact:

Technical: Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com

Press: Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

www.heraeus-noblelight.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

More articles from Power and Electrical Engineering:

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

nachricht New nanofiber marks important step in next generation battery development
13.03.2017 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>