Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenlighting A Greener World

04.09.2009
Just a few years ago, most conversations Christian Wetzel had about his research began with a quick explanation of LEDs.

More recently, however, he’s noticed that the mention of LEDs – light-emitting diodes – no longer prompts puzzled looks. He rarely has to delve into the elevator pitch about LEDs needing only a fraction of the energy required by conventional light bulbs, or mention that LEDs contain none of the toxic heavy metals used in the newer compact fluorescent light bulbs. He no longer has to sell the idea that LEDs are incredibly durable and long-lived.

The virtues of sustainability and efficiency are now so engrained in the public consciousness, Wetzel said, that he can usually skip over the nuts and bolts of solid-state lighting and instead launch right into his work on developing a high-performance, low-cost green LED.

“Going green means different things to different people. For most, it means being more conscious about the environmental and global impacts of one’s actions. For companies, going green also means making a profit by selling equipment and services that allow one’s customers to be more efficient and reduce costs,” said Wetzel, professor of physics and the Wellfleet Professor of Future Chips at Rensselaer. “I’m doing both of those, but I’m also trying to make an LED that literally shines green light.”

First discovered in the 1920s, LEDs are semiconductors that convert electricity into light. When switched on, swarms of electrons pass through the semiconductor material and fall from an area with surplus electrons into an area with a shortage of electrons. As they fall, the electrons jump to a lower orbital and release small amounts of energy. This energy is realized as photons – the most basic unit of light. Unlike conventional light bulbs, LEDs produce almost no heat.

The color of light produced by LEDs depends on the type of semiconductor material it contains. The advancement of LED technology, Wetzel said, has followed a specific progression. The very first LEDs were red, and not long thereafter researchers tweaked their formula and developed some that produced orange light. Next in line, after considerable research efforts and some key breakthroughs, were blue LEDs, which can easily be found today as blue light sources in mobile phones, CD players, laptop computers, and other electronic devices.

The holy grail of solid-state lighting, however, is a true white LED. Wetzel said the white LEDs commonly used in novelty lighting applications, such as key chains, auto headlights, and grocery freezers, are actually blue LEDs coated with yellow phosphorus – which adds a step to the manufacturing process and also results in a faux-white illumination with a noticeable bluish tint.

The key to true white LEDs, Wetzel said, is all about green.

“We have high-performance red LEDs, we have high-performance blue LEDs, and if we paired them with a high-performance green LED we would be able to produce every color visible to the human eye – including true white,” he said. “Every computer monitor and television produces its picture by using red, blue, and green. That means developing a high-performance green LED would likely lead to a new generation of high-performance, energy-efficient display devices. The problem, however, is that green LEDs are much more difficult to create than I, or anyone else, imagined.”

Simple preliminary attempts to create green LEDs, by merely adding more indium (In) to the gallium nitride (GaN) materials that composed blue LEDs, were unsuccessful. The resulting green LEDs just weren’t strong or bright enough to stand toe-to-toe with red or blue. Wetzel and his research group have been working to tweak precisely how to add more indium, and how to grow the structure more carefully into a device, with the goal of boosting the strength and light output of green LEDs. They’re endeavoring, he said, to “close the green gap.”

Once they overcome the challenge of developing efficient green LEDs, he envisions LED technology will quickly evolve from its current applications in signs and small displays and grow into a universally adopted, globally used replacement for traditional light bulbs and compact fluorescence tubes. Wetzel said lights for general lighting applications, as well as the lighting of televisions, computer screens, and other electronics devices, will be cheaper, more energy efficient, and more reliable if we used LEDs.

“This is a new and exciting technology that holds immense promise, but the technological landscape is constantly in flux and we still have a ways to go before we are able to fully realize the energy and cost savings of LEDs,” Wetzel said. “But I know that people are interested in lighting their homes and powering their devices with LEDs because they’re always asking me, ‘so when can I buy one?’”

Wetzel has been working on this problem for several years, and in recent months received an additional $1.8 million in funding from the U.S. Department of Energy. He has also partnered with several companies, large and small, to join efforts and finally close the “green gap” once and for all.

To see a video of Wetzel talking about his green LED work, visit: http://www.youtube.com/watch?v=GhxYdvD5bno

For general information on Wetzel’s research, visit his bio.

For additional stories on green research and sustainability at Rensselaer, visit: http://green.rpi.edu.

Michael Mullaney | Newswise Science News
Further information:
http://green.rpi.edu
http://www.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>