Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenlighting A Greener World

04.09.2009
Just a few years ago, most conversations Christian Wetzel had about his research began with a quick explanation of LEDs.

More recently, however, he’s noticed that the mention of LEDs – light-emitting diodes – no longer prompts puzzled looks. He rarely has to delve into the elevator pitch about LEDs needing only a fraction of the energy required by conventional light bulbs, or mention that LEDs contain none of the toxic heavy metals used in the newer compact fluorescent light bulbs. He no longer has to sell the idea that LEDs are incredibly durable and long-lived.

The virtues of sustainability and efficiency are now so engrained in the public consciousness, Wetzel said, that he can usually skip over the nuts and bolts of solid-state lighting and instead launch right into his work on developing a high-performance, low-cost green LED.

“Going green means different things to different people. For most, it means being more conscious about the environmental and global impacts of one’s actions. For companies, going green also means making a profit by selling equipment and services that allow one’s customers to be more efficient and reduce costs,” said Wetzel, professor of physics and the Wellfleet Professor of Future Chips at Rensselaer. “I’m doing both of those, but I’m also trying to make an LED that literally shines green light.”

First discovered in the 1920s, LEDs are semiconductors that convert electricity into light. When switched on, swarms of electrons pass through the semiconductor material and fall from an area with surplus electrons into an area with a shortage of electrons. As they fall, the electrons jump to a lower orbital and release small amounts of energy. This energy is realized as photons – the most basic unit of light. Unlike conventional light bulbs, LEDs produce almost no heat.

The color of light produced by LEDs depends on the type of semiconductor material it contains. The advancement of LED technology, Wetzel said, has followed a specific progression. The very first LEDs were red, and not long thereafter researchers tweaked their formula and developed some that produced orange light. Next in line, after considerable research efforts and some key breakthroughs, were blue LEDs, which can easily be found today as blue light sources in mobile phones, CD players, laptop computers, and other electronic devices.

The holy grail of solid-state lighting, however, is a true white LED. Wetzel said the white LEDs commonly used in novelty lighting applications, such as key chains, auto headlights, and grocery freezers, are actually blue LEDs coated with yellow phosphorus – which adds a step to the manufacturing process and also results in a faux-white illumination with a noticeable bluish tint.

The key to true white LEDs, Wetzel said, is all about green.

“We have high-performance red LEDs, we have high-performance blue LEDs, and if we paired them with a high-performance green LED we would be able to produce every color visible to the human eye – including true white,” he said. “Every computer monitor and television produces its picture by using red, blue, and green. That means developing a high-performance green LED would likely lead to a new generation of high-performance, energy-efficient display devices. The problem, however, is that green LEDs are much more difficult to create than I, or anyone else, imagined.”

Simple preliminary attempts to create green LEDs, by merely adding more indium (In) to the gallium nitride (GaN) materials that composed blue LEDs, were unsuccessful. The resulting green LEDs just weren’t strong or bright enough to stand toe-to-toe with red or blue. Wetzel and his research group have been working to tweak precisely how to add more indium, and how to grow the structure more carefully into a device, with the goal of boosting the strength and light output of green LEDs. They’re endeavoring, he said, to “close the green gap.”

Once they overcome the challenge of developing efficient green LEDs, he envisions LED technology will quickly evolve from its current applications in signs and small displays and grow into a universally adopted, globally used replacement for traditional light bulbs and compact fluorescence tubes. Wetzel said lights for general lighting applications, as well as the lighting of televisions, computer screens, and other electronics devices, will be cheaper, more energy efficient, and more reliable if we used LEDs.

“This is a new and exciting technology that holds immense promise, but the technological landscape is constantly in flux and we still have a ways to go before we are able to fully realize the energy and cost savings of LEDs,” Wetzel said. “But I know that people are interested in lighting their homes and powering their devices with LEDs because they’re always asking me, ‘so when can I buy one?’”

Wetzel has been working on this problem for several years, and in recent months received an additional $1.8 million in funding from the U.S. Department of Energy. He has also partnered with several companies, large and small, to join efforts and finally close the “green gap” once and for all.

To see a video of Wetzel talking about his green LED work, visit: http://www.youtube.com/watch?v=GhxYdvD5bno

For general information on Wetzel’s research, visit his bio.

For additional stories on green research and sustainability at Rensselaer, visit: http://green.rpi.edu.

Michael Mullaney | Newswise Science News
Further information:
http://green.rpi.edu
http://www.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>