Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics from the printer

19.01.2009
Electronic systems designed to perform simple functions, such as monitor the temperature on a yogurt pot, mustn’t cost much: This is where printed electronics are at an advantage. Researchers are now significantly improving the properties of printed circuits.

Televisions have changed dramatically: While bulky TV sets dominated our living rooms until just a few years ago, the screens are now so flat that they can easily be hung on the wall.

A close look at the inside of these devices will reveal fine conductor paths and transistors that supply the electricity needed to switch the pixels on the screen on and off. These circuits are manufactured layer by layer, usually by photolithography. The materials are deposited onto the entire surface of a substrate and covered with photoresist, which is exposed to light at specific points using a mask.

The exposed photoresist alters its chemical properties: It becomes soluble and can be easily removed. The layer to be structured returns to the surface and can be etched away. However, the parts of the layer still covered with photoresist remain intact. One major disadvantage of this process is that a large fraction of the deposited material is not used. A more cost-efficient and resource-saving method is to deposit the material by printing only in places where it will actually be needed later.

Printed electronics already exist in the form of conductor paths and devices made from polymers. However, their electrical properties cannot compete with those of inorganic materials. The charge carriers in the polymers travel more slowly, with the result that a printed RFID tag, for example, will have a shorter transmission range than a conventional one. Moreover, polymers tend to react more sensitively to moisture and UV light. Researchers at the Fraunhofer Institute of Integrated Systems and Device Technology IISB in Erlangen have now commissioned a process line in which electron devices can be printed from inorganic materials using an ink jet similar to those in any office printer. “We use ink made of nanoparticles and add a stabilizer so that the particles can be easily processed and do not clump together,” says IISB group manager Dr. Michael Jank.

The nano ink has passed the first printing tests and Jank hopes that the researchers will be able to print circuits performing simple functions in about a year’s time. “We expect printed products to cost around 50 percent less than silicon-based ones in the case of simple circuits,” he says. “Printed RFID tags should then be cheap enough to be attached to the packaging of low-cost products such as yogurts, where they can then monitor the temperature, and store and transmit data.”

Dr.-Ing. Michael Jank | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2009/01/ResearchNews012009Topic2.jsp

More articles from Power and Electrical Engineering:

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>