Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compact high-temperature superconducting cables demonstrated at NIST

18.02.2011
A researcher at the National Institute of Standards and Technology (NIST) has invented a method of making high-temperature superconducting (HTS) cables that are thinner and more flexible than demonstration HTS cables now installed in the electric power grid while carrying the same or more current.

The compact cables could be used in the electric grid as well as scientific and medical equipment and may enable HTS power transmission for military applications.

Described in a paper just published online,* the new method involves winding multiple HTS-coated conductors** around a multi-strand copper "former" or core. The superconducting layers are wound in spirals in alternating directions. One prototype cable is 6.5 millimeters (mm) in outer diameter and carries a current of 1,200 amperes; a second cable is 7.5 mm in diameter and carries a current as high as 2,800 amperes. They are roughly one-tenth the diameter of typical HTS cables used in the power grid. (Standard electrical transmission lines normally operate at currents below 1,000 amperes.)

HTS materials, which conduct electricity without resistance when cooled sufficiently (below 77 K, or minus 196 C/minus 321 F, for the new cables) with liquid nitrogen or helium gas, are used to boost efficiency in some power grids. The main innovation in the compact cables is the tolerance of newer HTS conductors to compressive strain that allows use of the unusually slender copper former, says developer Danko van der Laan, a University of Colorado scientist working at NIST.

"The knowledge I gained while working at NIST on electromechanical properties of high-temperature superconductors was very important for inventing the initial cable concept," van der Laan says. "For instance, my discovery that the conductor survives large compressive strains*** made me realize that wrapping the conductor around a small diameter former would most likely work."

Van der Laan and NIST colleagues demonstrated the feasibility of the new concept by making several cables and testing their performance. They used an HTS material with a critical current that is less sensitive to strain than some other materials. Although the prototype cables are wound by hand, several manufacturers say mass production is feasible.

NIST researchers are now developing prototype compact HTS cables for the military, which requires small size and light weight as well as flexibility to pull transmission lines through conduits with tight bends. Beside power transmission, the flexible cabling concept could be used for superconducting transformers, generators, and magnetic energy storage devices that require high-current windings. The compact cables also could be used in high-field magnets for fusion and for medical applications such as next-generation magnetic resonance imaging and proton cancer treatment systems.

The work was supported in part by the U.S. Department of Energy.

* D.C. van der Laan, X.F. Lu, and L.F. Goodrich. Compact GdBa2Cu3O7-?. coated conductor cables for electric power transmission and magnet applications. Superconductor Science & Technology. 24 042001, doi: 10.1088/0953-2048/24/4/042001.

** The superconducting compound used in the work is gadolinium-barium-copper-oxide, or GdBa2Cu3O7-?.

*** See the NIST Feb. 15, 2007, Tech Beat article "Strain Has Major Effect on High-Temp Superconductors," at www.nist.gov/public_affairs/techbeat/tb2007_0215.htm#htc.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>