Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosolar Breakthrough Promises Cheap, Easy Green Electricity

03.02.2012
Barry D. Bruce, professor of biochemistry, cellular and molecular biology, at the University of Tennessee, Knoxville, is turning the term "power plant" on its head. The biochemist and a team of researchers have developed a system that taps into photosynthetic processes to produce efficient and inexpensive energy.

Bruce collaborated with researchers from the Massachusetts Institute of Technology and Ecole Polytechnique Federale in Switzerland to develop a process that improves the efficiency of generating electric power using molecular structures extracted from plants. The biosolar breakthrough has the potential to make "green" electricity dramatically cheaper and easier.

"This system is a preferred method of sustainable energy because it is clean and it is potentially very efficient," said Bruce, who was named one of "Ten Revolutionaries that May Change the World" by Forbes magazine in 2007 for his early work, which first demonstated biosolar electricity generation. "As opposed to conventional photovoltaic solar power systems, we are using renewable biological materials rather than toxic chemicals to generate energy. Likewise, our system will require less time, land, water and input of fossil fuels to produce energy than most biofuels."

Their findings are in the current issue of Nature: Scientific Reports.

To produce the energy, the scientists harnessed the power of a key component of photosynthesis known as photosystem-I (PSI) from blue-green algae. This complex was then bioengineered to specifically interact with a semi-conductor so that, when illuminated, the process of photosynthesis produced electricity. Because of the engineered properties, the system self-assembles and is much easier to re-create than his earlier work. In fact, the approach is simple enough that it can be replicated in most labs—allowing others around the world to work toward further optimization.

"Because the system is so cheap and simple, my hope is that this system will develop with additional improvements to lead to a green, sustainable energy source," said Bruce, noting that today's fossil fuels were once, millions of years ago, energy-rich plant matter whose growth also was supported by the sun via the process of photosynthesis.

This green solar cell is a marriage of non-biological and biological materials. It consists of small tubes made of zinc oxide—this is the non-biological material. These tiny tubes are bioengineered to attract PSI particles and quickly become coated with them—that's the biological part. Done correctly, the two materials intimately intermingle on the metal oxide interface, which when illuminated by sunlight, excites PSI to produce an electron which "jumps" into the zinc oxide semiconductor, producing an electric current.

The mechanism is orders of magnitude more efficient than Bruce's earlier work for producing bio-electricity thanks to the interfacing of PS-I with the large surface provided by the nanostructured conductive zinc oxide; however it still needs to improve manifold to become useful. Still, the researchers are optimistic and expect rapid progress.

Bruce's ability to extract the photosynthetic complexes from algae was key to the new biosolar process. His lab at UT isolated and bioengineered usable quantities of the PSI for the research.

Andreas Mershin, the lead author of the paper and a research scientist at MIT, conceptualized and created the nanoscale wires and platform. He credits his design to observing the way needles on pine trees are placed to maximize exposure to sunlight.

Mohammad Khaja Nazeeruddin in the lab of Michael Graetzel, a professor at the Ecole Polytechnique Federale in Lausanne, Switzerland, did the complex testing needed to determine that the new mechanism actually performed as expected. Graetzel is a pioneer in energy and electron transfer reactions and their application in solar energy conversion.

Michael Vaughn, once an undergraduate in Bruce's lab and now a National Science Foundation (NSF) predoctoral fellow at Arizona State University, also collaborated on the paper.

"This is a real scientific breakthrough that could become a significant part of our renewable energy strategy in the future," said Lee Riedinger, interim vice chancellor for research. "This success shows that the major energy challenges facing us require clever interdisciplinary solutions, which is what we are trying to achieve in our energy science and engineering PhD program at the Bredesen Center for Interdisciplinary Research and Graduate Education of which Dr. Bruce is one of the leading faculty."

The Bredesen Center is a joint UT/Oak Ridge National Laboratory academic unit. Bruce is also a co-principal investigator and scientific thrust leader in TN: SCORE, the Tennessee Solar Conversion and Storage Using Outreach, Research and Education. The $20 million project is funded by the NSF and focuses on promoting research and education on solar energy problems across Tennessee. Additionally, he co-founded and is associate director of UT's Sustainable Energy Education.

Bruce's work is funded by the Emerging Frontiers Program at the National Science Foundation.

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>