FTO Knock-out – Non-human mammals for elucidating the role of FTO in obesity

Obesity is a growing health problem in the industrialised

countries. Especially cardiovascular diseases and type II diabetes are closely linked to a high body mass index (BMI). Humans with a BMI above 40 are considered morbidly obese. Apart from diet and lack of exercise also genetic predisposition is a major factor in obesity. Various genes have been studied to elucidate the role in increased body weight. The fat mass and obesity associated gene (FTO) is located on human chromosome 16. While the phenotypic association is clear, the physiological basis is poorly understood. FTO contains a nuclear localisation signal and shows a ubiquitous expression pattern including metabolically relevant tissues such as pancreas, liver and the hypothalamus. The present invention provides non-human mammals with partial or total disruption of the FTO gene or protein function. The invention provides model animals for studying the functional role of FTO. It further provides mammalian cells for high throughput screening of agents modifying the function of FTO.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 0

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors