LED light coupler

<strong>Background</strong><br>

High-performance LEDs typically have a lens positioned right on top of the emitting surface. With this lens it is possible to emit more light from the LED. Unfortunately, this lens also prohibits attaching an optical component directly to the LED. Typical LEDs have a very broad solid angle of emission whereas waveguides typically have only a very small acceptance angle for light to be coupled into it. Therefore the coupling efficiency between an LED and a waveguide decreases as the distance between the components increases.<br><br> <strong>Technology</strong><br> We offer improved coupling efficiency by using a sleeve between the LED and the waveguide. This sleeve has an inner reflective surface in the shape of a truncated cone, allowing more light to be coupled into the waveguide, thereby increasing the coupling efficiency. A further advantage is that the position of the lens right above the LED can be varied relative to the sleeve, so that the divergence and intensity at the distal end of the waveguide can be adjusted and optimized as desired. The lens and sleeve are separate components which can be positioned relative to each other during the fabrication process. <br><br> <strong>Benefits</strong> <ul> <li>Increased coupling efficiency</li> <li>Adjustable divergence and intensity at distal end of waveguide</li> <li>Easy fabrication </li> </ul> <p><strong>IP Rights</strong><br> US patent application filed (05/2012) <br> <br> <strong>Patent Owner</strong><br> Technische Universität Berlin</p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors