Detection of Malicious Non-Executable Files Using Syntactic Structure

A major portion of threats against end-user systems arises from non-executable files, e.g., PDF documents or Flash animations. Such files may contain malicious executable content which is launched when a file is opened in a vulnerable viewer. Such attacks are hard to detect due to the high complexity of respective file formats. Conventional antivirus products often miss malicious content hidden in the rich syntactic structure of file formats.

A research group at the University of Tübingen developed a patent-pending technology: a highly performant static analysis tool for detection of malicious PDF documents. Instead of performing analysis of JavaScript or any other content for detection, the new developed method provides a reliable means for detection of malicious files by focusing precisely on structural artifacts arising from embedded malicious content. The research group could demonstrate its effectiveness on a dataset of about 500,000 real-world malicious and benign PDF files: the new method outperforms each of the 43 antiviruses at VirusTotal and other specialized detection methods. Additionally, the new method is almost completely immune to nearly worst-case attack scenarios.

Further Information: PDF

Eberhard Karls Universität Tübingen
Phone: +49 (7071) 29-72639

Contact
Dr. Rolf Hecker

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors