Narrow subset of cells is responsible for metastasis in multiple myeloma, study finds

The study suggests that attacking those subsets with targeted drugs may degrade the disease's ability to spread throughout the bone marrow of affected patients, the authors say.

The discovery was made by developing a mouse model of the disease that enabled researchers to track which of 15 genetic groups – or subclones – of myeloma cells spread beyond their initial site in the animals' hind legs. By labeling the different subgroups with fluorescent dyes, researchers determined that just one of the subclones was responsible for the disease metastasis.

They then compared the pattern of gene abnormalities in the initial myeloma tissue and the metastatic tumors. They found that 238 genes were significantly less active in the latter group – comprising a gene “signature” of metastatic myeloma.

“Out of all the genes that were differently expressed in the two groups, we found 11 that played a functional role in metastasis and therefore may be drivers of the disease,” said Irene Ghobrial, MD, of Dana-Farber, the study's senior author. If future studies confirm that role, the genes may become targets for therapies that block myeloma metastasis, she added.

The lead author of the study is Yuji Mishima, PhD, of Dana-Farber. Co-authors are Michele Moschetta, MD, Salomon Manier, MD, Siobhan Glavey, MD, Michaela Reagan, PhD, Yawara Kawano, MD, PhD, Nikhil Munshi, MD, Kenneth Anderson, MD, and Aldo Roccaro, MD, PhD, of Dana-Farber; Jiantao Shi, PhD, and Winston Hide, PhD, of Harvard School of Public Health; Francois Mercier, MD, and David Scadden, MD, of Massachusetts General Hospital.

This study was supported by the Leukemia & Lymphoma Society (LLS) Specialized Center of Research (SCOR) program.

Media Contact

Anne Doerr EurekAlert!

More Information:

http://www.dfci.harvard.edu/

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

When the music changes, so does the dance

Controlling cooperative electronic states in Kagome metals. Playing a different sound track is, physically speaking, only a minute change of the vibration spectrum, yet its impact on a dance floor…

EcoFABs could lead to better bioenergy crops

Fabricated ecosystems created at Berkeley Lab will expedite microbiome research, and help underrepresented students in the classroom. A greater understanding of how plants and microbes work together to store vast…

Rice lab finds better way to handle hard-to-recycle material

Process transforms glass fiber-reinforced plastic into silicon carbide. Glass fiber-reinforced plastic (GFRP), a strong and durable composite material, is widely used in everything from aircraft parts to windmill blades. Yet…

Partners & Sponsors