Nanostructured sensors for the United States’ company NanoSonic

A research team from the Department of Electric and Electronic Engineering at the Public University of Navarre has designed nanostructured optical sensors and instrumentation to monitor these sensors, for the United States’ company NanoSonic, which has begun to market the product.

The optic fibre sensors are human hair-sized devices. The Public University of Navarre has developed a humidity sensor and a light source for applications with optic fibre sensors. Moreover, the Navarre team has designed and manufactured optic-electronic converters that incorporate a signal terminal for the sensor and which, in turn, can be connected to other electronic apparatus, such as a computer, and through which information gathered by the sensors can be consulted.

The collaboration between the Navarre university researchers and the North American company will continue as a result of the new contract for the design and development of electronic instrumentation for nanosensors, signed by both parties, and which will terminate in June of this year.

Dosage of medicines

Nanostructured materials are materials that are synthesised and ordered in their manufacture at a molecular level, and that are deposited with the precision of a few nanometers.

This technique involves the successive deposition of anionic and cationic materials, i.e., materials negatively and positively charged respectively and which can be organised in such a way that the coatings have a thickness in the order of nanometers. The technique is very versatile when combining materials and can provide a highly useful tool to synthesise materials sensitive to different biomedical variables.

A number of research projects on nanostructured materials are currently under way. One of the applications, for example, consists of the dosage of medicines in those cases where the medication is not to be absorbed immediately, but when a certain level is reached in the intestine. For this to happen, the capsule has to be permeable to the medicine only when that level inside the intestine has been reached, given that this is where its efficacy is at its optimum.

To this end, microcapsules have been created composed of a microscopic sphere inside which is the medicine to be dosed. This sphere covering the medicine, and depending on the conditions, opens and closes via a system of micro-pores. In this way the material can be programmed so that, when a certain level of intestinal acidity is reached, the pores open and release the medicine.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Media Contact

Garazi Andonegi Basque research

Alle Nachrichten aus der Kategorie: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Key breakthrough towards on-site cancer diagnosis

No stain? No sweat: Terahertz waves can image early-stage breast cancer without staining. A team of researchers at Osaka University, in collaboration with the University of Bordeaux and the Bergonié…

A CNIO team describes how a virus can cause diabetes

It has recently been described that infection by some enteroviruses – a genus of viruses that commonly cause diseases of varying severity – could potentially trigger diabetes, although its direct…

Targeting the shell of the Ebola virus

UD research team looking at ways to destabilize virus, knock it out with antivirals. As the world grapples with the coronavirus (COVID-19) pandemic, another virus has been raging again in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close