X-ray technology reveals never-before-seen matter around black hole

A representation of two competing black hole models: lamp-post and extended. The black dot is the black hole, blue is its accretion disk, and red is the corona. Credit: Fumiya Imazato, Hiroshima University

In an international collaboration between Japan and Sweden, scientists clarified how gravity affects the shape of matter near the black hole in binary system Cygnus X-1. Their findings, which were published in Nature Astronomy this month, may help scientists further understand the physics of strong gravity and the evolution of black holes and galaxies.

Near the center of the constellation of Cygnus is a star orbiting the first black hole discovered in the universe. Together, they form a binary system known as Cygnus X-1. This black hole is also one of the brightest sources of X-rays in the sky. However, the geometry of matter that gives rise to this light was uncertain. The research team revealed this information from a new technique called X-ray polarimetry.

Taking a picture of a black hole is not easy. For one thing, it is not yet possible to observe a black hole because light cannot escape it. Rather, instead of observing the black hole itself, scientists can observe light coming from matter close to the black hole. In the case of Cygnus X-1, this matter comes from the star that closely orbits the black hole.

Most light that we see, like from the sun, vibrates in many directions. Polarization filters light so that it vibrates in one direction. It is how snow goggles with polarized lenses let skiers see more easily where they are going down the mountain – they work because the filter cuts light reflecting off of the snow.

“It's the same situation with hard X-rays around a black hole,” Hiroshima University Assistant Professor and study coauthor Hiromitsu Takahashi said. “However, hard X-rays and gamma rays coming from near the black hole penetrate this filter. There are no such 'goggles' for these rays, so we need another special kind of treatment to direct and measure this scattering of light.”

The team needed to figure out where the light was coming from and where it scattered. In order to make both of these measurements, they launched an X-ray polarimeter on a balloon called PoGO+. From there, the team could piece together what fraction of hard X-rays reflected off the accretion disk and identify the matter shape.

Two competing models describe how matter near a black hole can look in a binary system such as Cygnus X-1: the lamp-post and extended model. In the lamp-post model, the corona is compact and bound closely to the black hole. Photons bend toward the accretion disk, resulting in more reflected light. In the extended model, the corona is larger and spread around the vicinity of the black hole. In this case, the reflected light by the disk is weaker.

Since light did not bend that much under the strong gravity of the black hole, the team concluded that the black hole fit the extended corona model.

With this information, the researchers can uncover more characteristics about black holes. One example is its spin. The effects of spin can modify the space-time surrounding the black hole. Spin could also provide clues into the evolution of the black hole. It could be slowing down in speed since the beginning of the universe, or it could be accumulating matter and spinning faster.

“The black hole in Cygnus is one of many,” Takahashi said. “We would like to study more black holes using X-ray polarimetry, like those closer to the center of galaxies. Maybe we better understand black hole evolution, as well as galaxy evolution.”


Since its foundation in 1949, Hiroshima University has strived to become one of the most prominent and comprehensive universities in Japan for the promotion and development of scholarship and education. Consisting of 12 schools and 11 graduate schools, ranging from International Development and Cooperation to Integrated Arts and Sciences, the university has grown into one of the most distinguished research universities in Japan. English website: https://www.hiroshima-u.ac.jp/en

Media Contact

Norifumi Miyokawa EurekAlert!

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Customized programming of human stem cells

Induced pluripotent stem cells (iPS) have the potential to convert into a wide variety of cell types and tissues. However, the “recipes” for this conversion are often complicated and difficult…

Electronic skin has a strong future stretching ahead

A material that mimics human skin in strength, stretchability and sensitivity could be used to collect biological data in real time. Electronic skin, or e-skin, may play an important role…

Fast-moving gas flowing away from young star caused by icy comet vaporisation

A unique stage of planetary system evolution has been imaged by astronomers, showing fast-moving carbon monoxide gas flowing away from a star system over 400 light years away, a discovery…


By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.