Amplification of Sound Waves at Extreme Frequencies

Changes of the sample reflectivity as a function of the delay time after the pump pulse. The observed oscillations are proportional to the instantaneous amplitude of the sound wave. The blue curve shows the results without the current through the superlattice, the red curve with a current of 1 A. With current the amplitude is always larger than without current. The amplification (the ratio between the red and blue curves) is most pronounced at delay times of 300 ps (1 picosecond (ps) is 10-12 s, one millionth of a millionth of a second), since the amplification takes time. Fig.: MBI

Ultrasound is an acoustic wave at a frequency well above the human audible limit. Ultrasound in the megahertz range (1 MHz = 106 Hz = 1 million oscillations per second) finds broad application in sonography for, e.g., medical imaging of organs in a body and nondestructive testing of materials. The spatial resolution of the image is set by the ultrasound wavelength.

To image objects on the nanoscale (1 nanometer = 10to the-9 m = 1 billionth of a meter), sound waves with a frequency of several hundreds of gigahertz (1 gigahertz (GHz) = 1000 MHz) are required. To develop such waves into a diagnostic tool, novel sources and sound amplification schemes need to provide sufficient sound intensities.

In a recent publication (K. Shinokita et al., Phys. Rev. Lett. 116, 075504 (2016)), researchers from the Max-Born-Institut in Berlin together with colleagues from the Paul-Drude-Institut, Berlin, and the École Normale Supérieure, Paris, have demonstrated a new method for sound amplification in a specially designed semiconductor structure consisting of a sequence of nanolayers. Sound waves with a frequency of 400 GHz are generated and detected with short optical pulses from a laser.

The sound is amplified by interaction with an electric current traveling through the semiconductor in the same direction as the sound waves. The sound amplification is based on a process called “SASER”, the Sound Amplification by Stimulated Emission of Radiation, in full analogy to the amplification of light in a laser.

The sound wave stimulates electrons moving with a velocity higher than the sound velocity, to go from a state of high energy to a state of lower energy and, thus, make the sound wave stronger. To achieve a net amplification, it is necessary that there are more electrons in the high-energy than in the lower-energy state. In this way, a 400 GHz sound wave is amplified by a factor of two.

The present work is a proof of principle. For a usable source of high-frequency sound waves, it is necessary to further increase the amplification, which should be possible by improving the design of the structure and, most importantly, better cooling of the semiconductor device. Once such a source is available, it can be used for extending the spatial resolution of sonography towards the scale viruses, a length scale much shorter than the wavelength of visible light.

Original Publication: Physical Review Letters 116, 075504
Strong Amplification of Coherent Acoustic Phonons by Intraminiband Currents in a Semiconductor Superlattice

Keisuke Shinokita, Klaus Reimann, Michael Woerner, Thomas Elsaesser, Rudolf Hey, Christos Flytzanis

Contact
Prof. Klaus Reimann Tel. 030 6392 1476
Dr. Michael Wörner Tel. 030 6392 1470
Prof. Dr. Thomas Elsässer Tel. 030 6392 1400

This article was chosen as an Editor's suggestion, see also: Pumping up the sound

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.116.075504

Media Contact

Saskia Donath Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

How Stable is the Antarctic Ice Sheet?

Scientists from Heidelberg University investigate which factors determine the stability of ice masses in East Antarctica. As temperatures rise due to climate change, the melting of polar ice sheets is…

Smart sensors for future fast charging batteries

European project “Spartacus” launched Faster charging, longer stability of performance not only for electric vehicles but also for smartphones and other battery powered products. What still sounds like science fiction…

Small molecules control bacterial resistance to antibiotics

Antibiotics have revolutionized medicine by providing effective treatments for infectious diseases such as cholera. But the pathogens that cause disease are increasingly developing resistance to the antibiotics that are most…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close