Researchers Isolate Genes for Mosquito’s Sense of Smell

New research is helping to unravel the machinery that allows a mosquito to sniff out its human quarry, which could lead to more and better ways of foiling the disease-spreading insects. A report published today in the online version of the Proceedings of the National Academy of Sciences describes four genes that appear to produce odor-sensing molecules in Africa’s Anopheles gambiae, a carrier of malaria, the number two killer in the developing world. Understanding how such genes operate could enable scientists to develop new compounds that will repel mosquitoes or lure them to poisons. Such chemicals are needed, senior author Laurence J. Zwiebel of Vanderbilt University explains, because “current levels of malaria and other insect-borne diseases suggest that we’re not controlling these insects very well.”

Zwiebel and colleagues scanned the mosquito genome looking for genes similar to those that generate fruit fly odorant receptors, proteins that project from nerve cells and initiate a biochemical cascade when they encounter certain molecules in the air. The four candidates the team found were all active in the antennae and mouthparts of the mosquito, where its sense of smell resides. Significantly, one of the genes the team isolated was active only in females—the mosquito gender that bites—and its activity dropped off sharply 12 hours after a blood meal. Previous studies have found that a female’s sense of smell is dulled after feeding on human blood. Zwiebel says he and co-workers have now isolated a total of 30 possible receptors, and he expects to find anywhere from 60 to 100 in the end.

“Understanding the switch in the mosquito nose is just step one,” he notes. Individual receptors generally bind to a range of molecules with varying strengths. A longer and more difficult task, he says, will be to figure out how a mosquito’s brain processes the signals that various receptors send. Controlling malaria will require an international effort, Zwiebel stresses, and “we hope that by identifying these sorts of genes… we’ll be able to help.”

Media Contact

JR Minkel Scientific American

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

How proteins change shape inside cells

This new method from UNC School of Medicine researvchers Klaus Hahn and Tim Elston, has the potential to super-charge the study of human proteins as they interact and change their…

Motorised droplets thanks to feedback effects

A team of physicists from Germany and Sweden working with first author Jens Christian Grauer from Heinrich Heine University Düsseldorf (HHU) has examined a special system of colloidal particles that…

Breakthrough proof clears path for quantum AI

Novel theorem demonstrates convolutional neural networks can always be trained on quantum computers, overcoming threat of ‘barren plateaus’ in optimization problems. Convolutional neural networks running on quantum computers have generated…

Partners & Sponsors