Scientists find gene expression pattern may predict behavior of leukemia

The expression pattern of certain genes may someday help doctors to diagnose and predict whether or not an individual has an aggressive form of B-cell chronic lymphocytic leukemia (CLL), Jefferson cancer researchers have found.

Scientists, led by Carlo Croce, M.D., director of Jefferson’s Kimmel Cancer Center and professor and chair of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, looked at the expression of genes that encoded microRNAs (miRNAs), tiny pieces of genetic material that are thought to be important in the regulation of gene expression and in the development of cancer. MiRNAs can serve as stop signs for gene expression and protein synthesis, and are thought to play important roles in regulating gene expression in development.

Reporting in both the online and the August 10 print version of the Proceedings of the National Academy of Sciences, the researchers – taking advantage of a microarray chip Dr. Croce and his colleagues designed that carries all the known human miRNA genes – compared the expression of miRNA genes in human CLL samples with that of normal white blood cells, or lymphocytes, called CD5+ B cells. CLL, the most common adult leukemia in the Western world, is characterized by an abnormal increase in the number of B cells.

“We found two specific genetic signatures,” Dr. Croce says. One expression pattern of miRNA genes in CLL correlated with a deletion of a chromosomal region called 13q14. This region contained two small miRNA genes that are turned off in about 60 percent of CLL cases. The deletions at 13q14 represent an indicator of a good prognosis for the disease, he notes.

The other miRNA signature was associated with mutations in the Ig or immunoglobulin gene, which also indicates a good prognosis, says Dr. Croce. The researchers also found that the expression of one of the miRNA genes, miR-16, was reduced in both signatures.

“This suggests that CLL involves changes in miRNA, and that you can predict the behavior of CLL depending on the miRNA genetic signature,” says Dr. Croce. “We think we might be able to predict CLL behavior based on the miR-16 signature because that is the only common denominator between the two signatures with good prognosis.” But before using miRNA expression as any kind of clinical biomarker, says Dr. Croce, the results need to be verified in a clinical trial screening thousands of patients.

Dr. Croce and his colleagues had previously shown that deletions in miRNA genes were involved in B-cell CLL. They also had reported that human miRNA genes are frequently located at sites of the genome that are altered in human cancers.

The work might enable scientists to gain a better understanding of the roles of miRNAs in cancer and provide targets for future drug development.

Media Contact

Steve Benowitz EurekAlert!

Weitere Informationen:

http://www.jefferson.edu

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

How Stable is the Antarctic Ice Sheet?

Scientists from Heidelberg University investigate which factors determine the stability of ice masses in East Antarctica. As temperatures rise due to climate change, the melting of polar ice sheets is…

Smart sensors for future fast charging batteries

European project “Spartacus” launched Faster charging, longer stability of performance not only for electric vehicles but also for smartphones and other battery powered products. What still sounds like science fiction…

Small molecules control bacterial resistance to antibiotics

Antibiotics have revolutionized medicine by providing effective treatments for infectious diseases such as cholera. But the pathogens that cause disease are increasingly developing resistance to the antibiotics that are most…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close