Dance of the molecules

New method tracking single atoms may lead to improved drug design

Until now, scientists studying the workings of ultra-microscopic forms have had to rely on the scientific equivalents of still photos, something like trying to fathom driving by looking at a photograph of a car. Now, Prof. Irit Sagi and her team of the Structural Biology Department are using new and innovative methods developed at the Weizmann Institute to see real-time “video clips” of enzyme molecules at work. The resolution of these animated clips is so fine that the scientists are able to see the movements of individual atoms within the molecule.

The challenge facing the Weizmann team was to capture, step-by-step, the complex process — the whole of which takes place in a tiny fraction of a second — that an enzyme molecule goes through as it performs its work. Their pioneering method was published in Nature Structural Biology. It was hailed as the first of its kind, and a potentially important tool for biophysicists.

To obtain the “live action” footage, Sagi and her team use a technique akin to stop-action photography, but on an infinitely smaller scale. They literally freeze the process at certain stages, using advanced methods of chemical analysis to determine the exact molecular layout at each stage. The most difficult part, says Sagi, was figuring out the correct time frames that would allow them to see each phase of enzyme activity clearly. She compares it to attempting to capture on film the swirling of syrup being mixed into cake batter – one has to gauge at what points individual stages of the process will be most visible.

Building an animated sequence from individual frames, the scientists are granted a rare peek into the intricate dance of life on the molecular level. “This method,” says Sagi, “represents more than a major breakthrough in the techniques used to understand enzyme activity. It changes the whole paradigm of drug formulation. Now we can precisely identify which parts of the molecule are the active regions (those which directly perform tasks), and the exact permutations of these molecular segments throughout the whole process. New, synthetic drugs can be designed to target specific actions or critical configurations.”

Sagi’s team is doing just that for one enzyme family known to play a role in cancer metastasis. Matrix metalloproteinases (MMPs), assist the cancer cells’ escape and entry into new tissues by breaking down the structural proteins that keep cells in place, a skill normally needed to clear out tissue in preparation for growth or repair. Using the knowledge gained by the new technique, the team designed a molecule to block MMPs at one crucial step in their dance.

Prof. Irit Sagi’s research is supported by the Avron-Wilstaetter Minerva Center; the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly; the Ceil and Joseph Mazer Center for Structural Biology; the Jakubskind-Cymerman Prize; the Laub Fund for Oncogene Research; Prof. Clotilde Pontecorvo, Italy; and Verband der Chemischen Industrie.

Media Contact

Alex Smith EurekAlert!

Weitere Informationen:

http://www.weizmann.ac.il/

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Argonne targets lithium-rich materials as key to more sustainable cost-effective batteries

Next-generation batteries using lithium-rich materials could be more sustainable and cost-effective, according to a team of researchers with the U.S. Department of Energy’s (DOE) Argonne National Laboratory. The pivotal discovery,…

Why disordered light-harvesting systems produce ordered outcomes

Scientists typically prefer to work with ordered systems. However, a diverse team of physicists and biophysicists from the University of Groningen found that individual light-harvesting nanotubes with disordered molecular structures…

RadarGlass – from vehicle headlight to radar transceiver

As a result of modern Advanced Driver Assistance Systems, the use of radar technology has become indispensable for the automotive sector. With the installation of a large and growing number…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close