Plants protect themselves against self-induced air pollutants

The researchers have studied the gas exchange of young poplars in the laboratory under controlled conditions.
Uni Innsbruck

Trees and other plants release isoprene into the atmosphere. Oxidation processes result in compounds that are harmful to plants. Researchers at the University of Innsbruck have now uncovered a mechanism by which plants protect themselves from these compounds, and have thus discovered an important biogenic source of oxidized volatile organic compounds in the atmosphere.

Plants release large quantities of the hydrocarbon isoprene into the atmosphere, about 600 million metric tons per year, half of which comes from tropical forests. This corresponds approximately to the annual emission of methane on earth. ” It is believed that trees release isoprene to protect themselves from oxidative stress,” explains Armin Hansel from the Department of Ion Physics and Applied Physics at the University of Innsbruck. Together with scientists from Germany, Finland and the USA, his research group has now investigated this interaction between the atmosphere and the plant world more closely.

Plants neutralize Isoprene photooxidation products

In the atmosphere, isoprene released by plants is very quickly converted by photo-oxidation into compounds that are harmful to plants. The Innsbruck scientists exposed young poplars to small doses of these compounds in the laboratory and studied the gas exchange under controlled conditions. For the measurements, the researchers used a specially developed mass spectrometer that can detect even the smallest concentrations of these chemical compounds in air. Similar instruments are distributed by the Innsbruck-based technology company Ionicon Analytik. Such devices were also used on measuring towers in forests in Finland and the USA.

Using the data, the researchers were able to show that trees absorb the harmful compounds into their leaves and convert them into the harmless compound methyl ethyl ketone. By analyzing the leaves from the laboratory experiments at Helmholtz Zentrum München, an enzyme could be identified that is very likely responsible for the detoxification process. “Since this enzyme is found in plants all over the world, we assume that this process is of great global importance,” summarizes Eva Canaval, first author of the research paper now published in the journal Communications Earth & Environment.

Natural source of ketones

Based on these results, scientists at the University of Minnesota have simulated the annual production of methyl ethyl ketone using a global computer model. “These simulations show that plants convert around 1.5 percent of isoprene emitted,” says Eva Canaval. “With about 5.6 million metric tons worldwide, this is the largest known natural source of methyl ethyl ketone.” The measurement data from forests in Finland and the USA confirm this. The researchers suspect that this detoxification process in plants is one of the most important natural sources of oxidized volatile organic compounds in the atmosphere.

The research work at the University of Innsbruck was financially supported by the Federal Ministry of Education, Science and Research and the European Union, among others.

Wissenschaftliche Ansprechpartner:

Eva Canaval
Department of Ion Physics and Applied Physics
University of Innsbruck
Tel.: +43 512 507 52645


Rapid conversion of isoprene photooxidation products in terrestrial plants. Eva Canaval, Dylan B. Millet, Ina Zimmer, Tetyana Nosenko, Elisabeth Georgii, Eva Maria Partoll, Lukas Fischer, Hariprasad D. Alwe, Markku Kulmala, Thomas Karl, Jörg-Peter Schnitzler, Armin Hansel. Communications Earth & Environment 2020 doi: 10.1038/s43247-020-00041-2 (

Media Contact

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Pitt researchers create nanoscale slalom course for electrons

Professors from the Department of Physics and Astronomy have created a serpentine path for electrons. A research team led by professors from the Department of Physics and Astronomy have created…

Novel haplotype-led approach to increase the precision of wheat breeding

Wheat researchers at the John Innes Centre are pioneering a new technique that promises to improve gene discovery for the globally important crop. Crop breeding involves assembling desired combinations of…

A microscope for everyone

Jena researchers develop open-source optical toolbox. The open-source system from the 3D printer delivers high-resolution images like commercial microscopes at hundreds of times the price. Modern microscopes used for biological…


By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.