Bacteria Enter Via Mucus-Making Gut Cells

A foodborne bacterium called Listeria monocytogenes (sometimes found in stinky cheeses) invades the body by binding to a protein called E-cadherin. However, as E-cadherin is normally buried within the junctions between gut cells, and is thus hidden from the cell surface, it’s not clear how the bug gains traction.

In response to Listeria invasion, specialized gut cells called goblet cells produce mucus in an attempt to flush the bacteria away. Scientists in France now find that the reorganization required for goblet cells to expel their slippery product also exposes E-cadherin on their surface, allowing Listeria to grab hold and cause systemic infection.

About The Journal of Experimental Medicine
The Journal of Experimental Medicine (JEM) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JEM content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jem.org.

Nikitas, G., et al. 2011. J. Exp. Med. doi:10.1084/jem.20110560

Media Contact

Rita Sullivan Newswise Science News

More Information:

http://www.rupress.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors