One Step Ahead: Adaptive Radar Systems for Smart Driver Assistance

Cognitive radar intelligently and automatically adapts its parameters to the individual radar scene. Fraunhofer FHR

Driver assistance systems have to ensure reliable operation in the whole range of different traffic conditions: In city traffic, for instance, they have to detect a large number of different targets in the presence of a very heterogeneous background.

On the highway, on the other hand, they have to recognize targets at high speeds and in large distances. Automotive radars have to be able to adapt to these changing conditions in order to accurately determine short and long distances, relative speeds, and target positions in each situation while recognizing several types of targets in diverse environments.

To achieve this, cognitive radars intelligently adapt their operational parameters such as the channel selection, the bandwidth, and the carrier frequency as well as the duration and the number of measurements to the different situations and tasks. One major challenge associated with the spatial resolution is the channel selection for the position estimation.

Here, the accuracy depends on the length of the antenna array. Accuracy increases with the number of antenna elements, i.e. with the length of the array. This, however, requires more transmit and receive channels with an adequate spacing, which leads to higher costs and a large volume of data that has to be processed in real time.

Fraunhofer FHR has developed a MIMO radar that adaptively detects the radar scene and uses complex algorithms to accurately predict the radar target’s new position based on previous measurements. With these one step ahead predictions, the controller in the system adaptively selects only the 4 to 6 receiver and transmitter channels necessary for the next measurement from the MIMO array’s 32 virtual channels.

Thus, the position can be accurately determined, even with a relatively small and cheaper system and a lower real time data volume. The results of each new measurement flow into the calculations for the next measurement according to the closed loop principle. This is how the radar system learns to continuously improve its adaptive strategy depending on the individual situations and to create an optimized image of the radar scene using less hardware and computational resources.

At the European Microwave Week EUMW, the scientists will present their cognitive radar demonstrator together with other radar innovations such as 3D printed lenses and new antenna developments at booth 33. In addition, in the Automotive Radar Area, they will exhibit their radar target simulator ATRIUM for the qualification of automotive radars. The EUMW will take place in Madrid from September 25 – 27, 2018.

As one of Europe’s leading institutes, the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR conducts extensive research in the area of high frequency and radar technology. Its core research focuses on sensors for precise distance regulation and positioning as well as imaging systems. The applications range from systems for reconnaissance, surveillance, and protection to real-time capable sensors for traffic and navigation as well as quality assurance and non-destructive testing.

https://www.fhr.fraunhofer.de/en/press-media/press-releases/2018/eumw2018_en.htm… Press Release and pictures in printable quality.

Media Contact

Christiane Weber Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

Alle Nachrichten aus der Kategorie: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

New solar cells for space

Almost all satellites are powered by solar cells – but solar cells are heavy. While conventional high-performance cells reach up to three watts of electricity per gram, perovskite and organic…

Development of a novel membrane laser module for spectral measurement methods

The Fraunhofer Institute for Applied Solid State Physics IAF has partnered up with the start-up “Twenty-One Semiconductors” (21s) from Stuttgart to bring their unique laser concept from lab to practice….

Dissecting protein assemblies

Super-resolution MINFLUX nanoscopy, developed by Nobel laureate Stefan Hell and his team, is able to discern fluorescent molecules that are only a few nanometers apart. In an initial application of…