Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Take Five: Aachen Laser Projects at EuroBLECH 2018

30.08.2018

Since it oversees such a large number of projects, the Fraunhofer Institute for Laser Technology ILT from Aachen is increasingly faced with the agony of choice: Which innovations should it present at an industrial exhibition or a congress? At EuroBLECH, from October 23 to 26, 2018 in Hanover, the Aachen scientists will be presenting five groundbreaking developments on all major trends in contemporary sheet metal processing – from hybrid lightweight construction to multifunctional laser robots with an integrated digital twin.

There is a common denominator for all five processes: They stand for different approaches to agile, laser-based manufacturing, and balance flexibility and productivity. Such manufacturing processes are particularly in demand for hybrid lightweight construction and electromobility, two major trends in sheet metal working.


A multifunctional laser processing head enables innovative sheet metal assemblies through the integrated cutting, welding and manufacture of structures additively.

© Fraunhofer ILT, Aachen, Germany


Together with BILSTEIN GmbH & Co. KG, Fraunhofer ILT has developed a very fast cutting process for differentiated rolled strip with partially different properties.

© Fraunhofer ILT, Aachen, Germany

“Laser technology combined with digitalization is a predestined solution for economically producing constantly fluctuating and unpredictable lot sizes in volatile markets“, explains Dr. Dirk Petring, group leader for Macro Joining and Cutting at Fraunhofer ILT.

Clever interplay of robot and laser processing head

The lighthouse project MultiPROmobil fits in with this need: The NRW-funded project will be launched in October of this year and coordinated by Fraunhofer ILT. A robot and a multifunctional laser processing head will be designed to enable clever interaction and integrate cutting, welding and generating of structures additively.

They are to be supported by a digital twin as well as intelligent design and simulation software. With MultiPROmobil, the Fraunhofer experts and their industrial partners want to reduce commissioning time by 30 percent and unit costs and resource consumption by at least 20 percent.

“In a subsequent expansion phase, a production facility with several robots will be built, in which each individual robot masters all three production disciplines“, says Dr. Petring, looking into the future. “In this way, process chains for the production of sheet metal assemblies can be made very flexible and scalable, especially with regard to the gradual introduction of e-mobility“.

Currently, the project participants are working on further developing the combi-head so that it can be changed between cutting, welding and now additive manufacturing processes as needed and without changing the optics and nozzles.

Laser beam high-speed cutting supersedes punching process

Another highlight of the Aachen scientists at EuroBLECH is the flexible high-speed cutting of metal strips: With assistance from Fraunhofer ILT, Honda has replaced the previous punching process – of sheet metal of up to 1.8 m by 4.0 m and a thickness of 0.5 to 2.3 mm – by an extremely fast laser cutting process, with a speed of up to 115 m/min at its plant in Yorii (Japan). Honda has achieved an output of 18,700 car body parts per day since introducing the laser blanking system in 2015.

Dr. Petring: “At the fair in Hanover, we will be reporting on the next step towards a very fast cutting process for differentiated rolled strips with partially different properties; we are currently developing this process together with BILSTEIN GmbH & Co. KG in Hagen, Germany.

Decisive arguments for BILTSTEIN are the tool-free production of variable cutting contours and maximum material savings in the manufacturing process as well as in terms of the subsequent component weight. Not only will we show a video about the process, but also first shaped blanks made using our process“.

Joining ultra high-strength steels reliably

The lightweight construction trend towards ultra high-strength steels is the focus of a project funded by the German Federation of Industrial Research Associations (AiF), which is supported by FOSTA (Forschungsvereinigung Stahlanwendung e.V.): Within the scope of FAAM (short for Further development, joining technology validation and technical design of welded joints with martensitic chromium steels), Fraunhofer ILT and its partners are developing and testing laser welding processes on various components. The demonstrator, for example, is a laser-designed bumper module, which the Aachen scientists will use to demonstrate how different high- and ultra-high-strength materials can be laser-welded in a hybrid construction.

Freeform mirror creates suitable laser beam

The optimal spatial and temporal adjustment of the temperature field plays the main role in the current research in the field of laser heat treatment. In Hanover, Fraunhofer ILT is showing how, by adapting the beam profile with the aid of a freeform mirror, areas and zones can be selectively and locally processed in order to generate defined strength profiles. In order to make laser heat treatment reliable and cost-effective with short cycle times, the Aachen scientists are working with significantly higher feed rates.

Process time and costs for raw materials lowered

The fifth exhibit, a roof bow created as part of the BMBF project HyBriLight, received the “Future of Composites in Transportation 2018 Innovation Award“ in Chicago in June 2018 at a JEC event. An original part of a vehicle from the BMW 7 Series was used as a model: a hybrid component with a fiber-reinforced plastic cross member (previously pure CFRP) and metallic connecting elements to the car body.

As an alternative to bonding and riveting previously used, the Aachen scientists use a laser-based joining process that connects plastic and metal with positive locking and adhesion. Moreover, material costs were significantly reduced by using GFRP instead of the more expensive CFRP. The latter is now used only as a strength-enhancing insert on the long sides of the cross member.

The roof bow is finally trimmed with an innovative laser cutting process, which allows processing of the material sandwich made of GFRP and CFRP in a single step. Several advantages speak in favor of innovation: reduction of process times by 70 percent compared to conventional processes, halving of raw material costs and the integration of several process steps into one process.

“In Hanover, we will be showing the new roof bow version, whose material mix of GFRP, CFRP and metal demonstrates the versatility of laser processing for joining and cutting complex components“, reports Dr. Frank Schneider, senior project manager in the group of Macro Joining and Cutting at Fraunhofer ILT.

Using demonstrators, components and videos, the Fraunhofer ILT researchers will be explaining the current state of development of five projects at EuroBLECH from October 23 to 26, 2018 in Hanover (Hall 11, Stand A25).

Wissenschaftliche Ansprechpartner:

Dr. rer. nat. Dirk Petring
Laser Cutting Group
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Dr.-Ing. Frank Schneider
Laser Cutting Group
Telephone +49 241 8906-426
frank.schneider@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en
https://www.euroblech.com/2018/english/

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Modular OLED light strips
17.09.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Deburring EXPO: Finishing sheet edges and functional surfaces with the laser
12.09.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>