Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Take Five: Aachen Laser Projects at EuroBLECH 2018

30.08.2018

Since it oversees such a large number of projects, the Fraunhofer Institute for Laser Technology ILT from Aachen is increasingly faced with the agony of choice: Which innovations should it present at an industrial exhibition or a congress? At EuroBLECH, from October 23 to 26, 2018 in Hanover, the Aachen scientists will be presenting five groundbreaking developments on all major trends in contemporary sheet metal processing – from hybrid lightweight construction to multifunctional laser robots with an integrated digital twin.

There is a common denominator for all five processes: They stand for different approaches to agile, laser-based manufacturing, and balance flexibility and productivity. Such manufacturing processes are particularly in demand for hybrid lightweight construction and electromobility, two major trends in sheet metal working.


A multifunctional laser processing head enables innovative sheet metal assemblies through the integrated cutting, welding and manufacture of structures additively.

© Fraunhofer ILT, Aachen, Germany


Together with BILSTEIN GmbH & Co. KG, Fraunhofer ILT has developed a very fast cutting process for differentiated rolled strip with partially different properties.

© Fraunhofer ILT, Aachen, Germany

“Laser technology combined with digitalization is a predestined solution for economically producing constantly fluctuating and unpredictable lot sizes in volatile markets“, explains Dr. Dirk Petring, group leader for Macro Joining and Cutting at Fraunhofer ILT.

Clever interplay of robot and laser processing head

The lighthouse project MultiPROmobil fits in with this need: The NRW-funded project will be launched in October of this year and coordinated by Fraunhofer ILT. A robot and a multifunctional laser processing head will be designed to enable clever interaction and integrate cutting, welding and generating of structures additively.

They are to be supported by a digital twin as well as intelligent design and simulation software. With MultiPROmobil, the Fraunhofer experts and their industrial partners want to reduce commissioning time by 30 percent and unit costs and resource consumption by at least 20 percent.

“In a subsequent expansion phase, a production facility with several robots will be built, in which each individual robot masters all three production disciplines“, says Dr. Petring, looking into the future. “In this way, process chains for the production of sheet metal assemblies can be made very flexible and scalable, especially with regard to the gradual introduction of e-mobility“.

Currently, the project participants are working on further developing the combi-head so that it can be changed between cutting, welding and now additive manufacturing processes as needed and without changing the optics and nozzles.

Laser beam high-speed cutting supersedes punching process

Another highlight of the Aachen scientists at EuroBLECH is the flexible high-speed cutting of metal strips: With assistance from Fraunhofer ILT, Honda has replaced the previous punching process – of sheet metal of up to 1.8 m by 4.0 m and a thickness of 0.5 to 2.3 mm – by an extremely fast laser cutting process, with a speed of up to 115 m/min at its plant in Yorii (Japan). Honda has achieved an output of 18,700 car body parts per day since introducing the laser blanking system in 2015.

Dr. Petring: “At the fair in Hanover, we will be reporting on the next step towards a very fast cutting process for differentiated rolled strips with partially different properties; we are currently developing this process together with BILSTEIN GmbH & Co. KG in Hagen, Germany.

Decisive arguments for BILTSTEIN are the tool-free production of variable cutting contours and maximum material savings in the manufacturing process as well as in terms of the subsequent component weight. Not only will we show a video about the process, but also first shaped blanks made using our process“.

Joining ultra high-strength steels reliably

The lightweight construction trend towards ultra high-strength steels is the focus of a project funded by the German Federation of Industrial Research Associations (AiF), which is supported by FOSTA (Forschungsvereinigung Stahlanwendung e.V.): Within the scope of FAAM (short for Further development, joining technology validation and technical design of welded joints with martensitic chromium steels), Fraunhofer ILT and its partners are developing and testing laser welding processes on various components. The demonstrator, for example, is a laser-designed bumper module, which the Aachen scientists will use to demonstrate how different high- and ultra-high-strength materials can be laser-welded in a hybrid construction.

Freeform mirror creates suitable laser beam

The optimal spatial and temporal adjustment of the temperature field plays the main role in the current research in the field of laser heat treatment. In Hanover, Fraunhofer ILT is showing how, by adapting the beam profile with the aid of a freeform mirror, areas and zones can be selectively and locally processed in order to generate defined strength profiles. In order to make laser heat treatment reliable and cost-effective with short cycle times, the Aachen scientists are working with significantly higher feed rates.

Process time and costs for raw materials lowered

The fifth exhibit, a roof bow created as part of the BMBF project HyBriLight, received the “Future of Composites in Transportation 2018 Innovation Award“ in Chicago in June 2018 at a JEC event. An original part of a vehicle from the BMW 7 Series was used as a model: a hybrid component with a fiber-reinforced plastic cross member (previously pure CFRP) and metallic connecting elements to the car body.

As an alternative to bonding and riveting previously used, the Aachen scientists use a laser-based joining process that connects plastic and metal with positive locking and adhesion. Moreover, material costs were significantly reduced by using GFRP instead of the more expensive CFRP. The latter is now used only as a strength-enhancing insert on the long sides of the cross member.

The roof bow is finally trimmed with an innovative laser cutting process, which allows processing of the material sandwich made of GFRP and CFRP in a single step. Several advantages speak in favor of innovation: reduction of process times by 70 percent compared to conventional processes, halving of raw material costs and the integration of several process steps into one process.

“In Hanover, we will be showing the new roof bow version, whose material mix of GFRP, CFRP and metal demonstrates the versatility of laser processing for joining and cutting complex components“, reports Dr. Frank Schneider, senior project manager in the group of Macro Joining and Cutting at Fraunhofer ILT.

Using demonstrators, components and videos, the Fraunhofer ILT researchers will be explaining the current state of development of five projects at EuroBLECH from October 23 to 26, 2018 in Hanover (Hall 11, Stand A25).

Wissenschaftliche Ansprechpartner:

Dr. rer. nat. Dirk Petring
Laser Cutting Group
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Dr.-Ing. Frank Schneider
Laser Cutting Group
Telephone +49 241 8906-426
frank.schneider@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en
https://www.euroblech.com/2018/english/

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Special exhibition area "Microtechnologies for Optical Devices" establishes itself at W3
12.03.2020 | IVAM Fachverband für Mikrotechnik

nachricht Augmented reality system facilitates manual manufacturing of products made of fiber-reinforced composite materials
04.03.2020 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

 
Latest News

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

When ions rattle their cage

06.04.2020 | Power and Electrical Engineering

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>