Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LASER World of PHOTONICS China Shanghai 2019: When the laser drills, cuts and coats…

14.02.2019

The Fraunhofer Institute for Laser Technology ILT, Aachen, Germany is presenting two highlights at the LASER World of PHOTONICS China Shanghai from March 20-22. The specialty of helical optic is ultra high quality and high precision micro-machining. The extreme high-speed laser material deposition EHLA shows how the patented invention has already proved itself as an alternative to hard chrome plating and thermal spraying for metal components that must withstand powerful stresses.

Helical optic


Demonstration: A video at the Laser World of Photonics China Shanghai 2019 shows how quickly, precisely and efficiently EHLA works.

Fraunhofer ILT, Aachen, Germany / Volker Lannert.


The Fraunhofer Institute for Laser Technology ILT, Aachen, Germany, demonstrates at the LASER World of PHOTONICS China Shanghai, how to helical cut microgears in sapphire glass.

Fraunhofer ILT, Aachen, Germany.

Industrial applications require the precision of machining, especially for micro drilling and cutting the controllable drilling diameter and kerf width, as well as desired taper. The new Helical Optic v6s provides highest drilling and cutting quality with high controllability and reproducibility in a large variety of materials and is able to machine hardened glass, sapphire, silicon wafers and diamond.

Fully controlled drilling of boreholes

In the center of this device, a Dove prism rotates at up to 20,000 rpm. At first, this leads to a rapid rotation of the laser beam itself, allowing for an effective smoothing of the beam profile. In addition, the laser beam rotates on a circular path with an adjustable diameter.

You can also set the tilt angle of the beam, allowing full control of the aspect ratio and conicity of the borehole. Since the upcoming technology was firstly sold in 2008 as version 1, the helical drilling technology has undergone several developments in optics and systems to make it suitable for higher processing requirements.

In addition, the Helical Optics v6/v6s use a modular design and standardized interfaces with better integrability. This compact design saves 15 percent of the volume compared to the previous version, enabling the optical system to be better integrated into the laser machining center.

However, the Fraunhofer ILT booth will focus on practical examples such as the following: Right-angled helical cutting of high-performance ceramics (effective cutting speed 10 mm/min, Ra on cutting kerf less than 0.7 μm).

Alternative to hard chrome plating

EHLA, the extreme high-speed laser material deposition, is tackling another task: As an alternative to hard chrome plating, Fraunhofer ILT and RWTH Aachen University have developed this process.

The new process raises the obtainable process speed by orders of magnitude compared to conventional laser material deposition to up to 500 meters per minute. Another benefit of EHLA is that it needs much less material, as it reduces the coating thickness that can be manufactured from over 500 micrometers to between 25 and 250 micrometers.

Industrialization in China

In cooperation with ACunity, a Fraunhofer ILT spin-off, focusing on customer support and process development for laser technology, the Dutch machine integrator Hornet Laser Cladding already delivered several EHLA systems to China. “We’re continuously further developing EHLA into an even more effective and cost-efficient process,” says Thomas Schopphoven, scientist and leader of the Productivity and System Technology team in the Laser Material Deposition group at Fraunhofer ILT.

Use in the automotive industry

As one of the most prominent and promising applications, the scientist mentions the possibility of coating car brake disks using EHLA. But the technique can also be used in the aviation industry. Schopphoven explains: “EHLA is particularly suitable for the repair of landing gear components, whose anti-corrosion and anti-wear coatings also have to withstand very high stresses, similarly to brake disks.”

Videos at the Fraunhofer ILT booth (Hall 3, Booth 3101) will show how EHLA and Helical Optics works.

Wissenschaftliche Ansprechpartner:

M.Eng. Chao He
Group Micro- and Nano Structuring
Telephone +49 241 8906-611
chao.he@llt.rwth-aachen.de

Dipl.-Ing. Thomas Schopphoven
Group Laser Material Deposition
Telephone +49 241 8906-8107
thomas.schopphoven@ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Special exhibition area "Microtechnologies for Optical Devices" establishes itself at W3
12.03.2020 | IVAM Fachverband für Mikrotechnik

nachricht Augmented reality system facilitates manual manufacturing of products made of fiber-reinforced composite materials
04.03.2020 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>